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ARTICLES

Are Individual Rights Possible?

DONALD G. SAARI

Northwestern University
Evanston, IL 60208-2730

1. Introduction

What are your rights? Should you or should society determine whether you can wear a
brown or blue shirt to class? Let’s be more provocative: should you or should society
decide whether you can read that raunchy article? The answers seem obvious—at
least they did until a quarter of a century ago when A. Sen ([18], [19]) analyzed this
question with an axiomatic formulation. His highly disturbing mathematical conclusion
casts doubt on the rights of individuals to make even seemingly trivial decisions of this
type.

How can Sen’s conclusion, which directly confronts our daily actions, be correct? As
his proof is accurate, it is understandable that his disquieting assertion continues to
concern experts from mathematics, economics, philosophy, and political science,
among other areas. While the response has created a sizable literature, none of the
papers provides a way out. Instead, the problem has become similar to a doll made of
fresh tar; the more it is embraced, the greater the mess that is discovered.

In this essay, a surprisingly elementary explanation of Sen’s problem is offered.
(See [16] for a complete description.) It only uses only the kind of introductory
mathematics too many students try to skip due to persistent rumors that this “busy
work” might convert brain matter into mushy oatmeal. Let me explain.

Sen’s assumptions In his theory, Sen assumes that society is confronted with k > 3
alternatives. Reflecting the sense that an individual has freedom of belief, Sen’s first
axiom is as follows:

(U) Unrestricted domain. Each individual can rank the alternatives in any desired
transitive manner.

Recall, an individual’s ranking is ¢ransitive if it obeys the ordering properties of points
on the line. For instance, if we prefer apple pie to blueberry pie and blueberry pie to
cherry pie, then surely we prefer apple pie to cherry pie; i.e., the rankings @ > b and
b > ¢ (meaning a is preferred to b, and b is preferred to ¢) imply a > ¢. As a voter
with transitive preferences is called “rational,” it is traditional to call a voter without
transitive preferences “irrational.” To avoid the nasty, pejorative ring of this term, I
use the more tempered choices of “primitive” or “unsophisticated” voters.

The second property is named after a nineteenth century mathematical physicist
who probably made his most important contributions in the social sciences.

(P) Pareto. If every individual prefers a > b, then society prefers a > b.

This makes sense; (P) merely requires that, should everyone agree on the ranking of a
particular pair, then that is society’s ranking of the pair.

83
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The third condition, Sen’s minimal liberalism, allows at least two individuals to
make certain societal decisions. More precisely:

(ML) Minimal Liberalism. There are at least two individuals who are decisive over
different pairs of alternatives; the decisive voter’s personal ranking for the
assigned pair determines society’s ranking of the pair.

This condition captures “individual liberty”: you, and only you, have the right to
choose which shirt to wear to class.

How can anyone argue against these natural, seemingly innocuous conditions? You
might, once you discover that they can make it impossible for society to reach a
decision. The problem, as explained next, is that (U), (P), and (ML) allow “cycles.”

The problem with cycles What are cycles? What problems do they cause? Can
they occur in natural settings? To explain in more familiar terms, “Step a little closer
because I am going to offer you a chance to become rich by playing a simple dice
game. You may choose any one of the three dice. Only after you are absolutely sure of
your choice will I select one of the remaining two. Indeed, I am such a nice guy that,
after a while, if you want my die you can have it. I will be happy to choose a different
one.

In this game, each of us rolls our selected die—high score wins. Instead of using
standard dice, each die from our set carries three numbers, with each repeated twice:
the markings are

Die ‘ Numbers

A [6]
B
C [9]

Any two dice define nine combinations. For instance, the possible outcomes for the
pair { A, B} are

(8,3), (85), (87),
(1,3), (1,5), (1,7),
6,3), (6,5), (6,7).

The dice are fair in the sense that each face is equally likely to appear, so the better
die is the one that wins the most pairwise matches. As die A wins everything in the
top row and the first two in the last, it wins five out of the nine possible arrangements.
Consequently, “A is better than B,” which I denote by A > B. A similar analysis
shows that B > C. Which die do you want?

It is tempting to select A, but if you do you will make me rich, because C > A. In
other words, these dice generate the cycle A > B, B> C, C > A, making it impossible
to choose the “best” die. Whatever your selection, there is a die I can choose to beat
you. I can even give you my die and select a different one to keep bleeding your
wallet dry. (For other cyclic dice arrangements, see [4].)

The trouble with cycles, then, is that they do not admit a maximal element.
Whether in an amusing dice game or, more troubling, in society, cycles subvert the
societal goal of making the “optimal” decision. A crucial objective of choice theory,
therefore, is to avoid cyclic conclusions.
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2. Sen’s Examples

In his seminal paper, Sen [18] constructs two examples where (P), (U), and (ML)
force the troubling cycles. The first example has voters one and two decisive,
respectively, over {a, b} and {b, ¢}. Table 1 identifies the binary rankings used by a
ML-procedure for a particular profile. (A profile lists how each voter ranks the
candidates.) The blanks in the table correspond to binary rankings that are irrelevant
for a ML-procedure because some other voter is decisive.

TABLE 1: Sen’s first example

Choice
Voter {a, b} {b,c} {a, c}
1 a>b — c>a
2 — b>c c>a
Others — — c>a

To reconstruct the original profile, note that the blanks for voters one and two must
be, respectively, ¢ > b (to assure that ¢ > a > b) and b > a (to assure that b > ¢ > a).
Choices for all other voters, who are unanimous in their {a, ¢} choice, come from
c¢>b>a,c>a>Db,or b>c>a. The cyclic societal outcome starts with a > b (voter
one is decisive over {a, b}), followed by b > ¢ (voter two is decisive over {b, c}), and
completed with ¢ > a (by Pareto). This cyclic outcome makes it impossible for society
to make decisions!

It is easy to identify with this conflict. For instance, the two voters could be dorm
roommates struggling over the use of a TV, where voter one is studious while voter
two, well, enjoys life. Choices a, b, and ¢ could represent, respectively, watching
news, watching MTV, and turning the TV off. Our studious voter one prefers
¢ >a>b while voter two prefers b > ¢ > a, generating the stated conflict. (Sen [18]
constructs an interesting censorship example.)

A natural objection to this example is that the decisive voters” decisions involve the
common alternative b. Could this explain the difficulty? Sen’s second example
sidesteps this criticism by assuming that voters one and two are decisive, respectively,
over the distinct pairs {a, b} and {c, d}; his choice of transitive preferences for the
voters defines the following table. Again, blanks correspond to binary rankings that are
irrelevant for a ML procedure. Transitive preferences supporting this table could be
where everyone but voter two has the ranking d >a > b > ¢ (so voter one’s blank is
filled with d > ¢ and “Others” are filled with a >b, d > ¢). Assign voter two the
preferences b >c¢>d > a to fill the blank with b >a. Then, society’s decision is
a > b (by voter one’s rights), b > ¢ (by unanimity), ¢ > d (by voter two’s rights), and
d>a (by unanimity); this creates another cycle and causes a potential societal

deadlock.

TABLE 2: Sen’s second example

Choice
Voter {a, b} {b, c} {c,d} {e, d}
1 a>b b>c — d>a
2 — b>c c>d d>a
Others — b>c — d>a
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Before reading any further, the reader is invited to try to resolve this conflict, which
is summarized in the next theorem. Remember, this is not a mere puzzle; it is a
serious issue that has confused a generation of experts from several fields. The
disturbing implications of Sen’s assertion have motivated philosophical debates about
the meaning of individual rights.

THEOREM (SEN). With n > 3 alternatives and at least two voters, no procedure can
satisfy (U), (P), and (ML) and avoid cyclic outcomes.

3. Resolution Through *“‘lgnored’’ Mathematics

Now that we understand Sen’s problem, let’s review the often “ignored” mathematics
that offers relief for this quarter-century headache. It is where the student is asked to
determine the domain for a function, say, f(x) = (x®+ 3x + 1) /[(x — D(x + 2)]. The
answer, R\{1, —2}, is all real numbers except for x =1 and x = —2, which require
dividing by zero. A related problem is to first specify a domain & and then
characterize all functions of a particular type that are defined on &. For instance, we
may wish to determine all rational functions (quotients of polynomials) defined on
R\{1, —2}. Clearly, the denominator polynomial’s real roots, if any, must be in
the set {1, —2}. For instance, (x%+ 1)/(x +3) is not defined on R\{1, —2}, but
(x2+ 1 /(x*+ 4) is. By specifying a domain we tacitly dismiss certain functions.

This elementary notion suggests a way to examine Sen’s conflict between individual
rights and societal decisions: first determine the domain required by (ML) and then
characterize all mappings (i.e., ways to make group decisions) defined on that domain.
The range of each ML-mapping, of course, is society’s rankings of the pairs.

For simplicity, start with the preferences of Table 1. As voter one’s {b, ¢} ranking is
irrelevant for a ML-procedure, it could be ¢ > b (to satisfy transitivity), or even b > ¢
to make voter one cyclic. Thus, (ML) allows the possibility that, instead of being
rational, voter one is primitive, with cyclic preferences! The same possibility holds for
voter two: because (ML) ignores the missing {a, b} ranking, there is nothing to
preclude voter two from having cyclic preferences. As a ML procedure only monitors
the ranking of one pair for the remaining voters, it is irrelevant for the procedure
whether the other two binary rankings define transitive or cyclic rankings.

To describe the actual domain of a ML mapping, rather than the intended one, let
B(3) be the set of all eight possible listings of strict rankings for the three pairs {a, b},
{b, c}, {a, ¢}; ties are not allowed. So, in addition to the six transitive ways to rank pairs
(e.g., (@a>b, b>c, a>c)€B()), the set B(3) also includes voters with cyclic
preferences (e.g., (a > b, b > ¢, ¢ > a)). As each voter’s preferences come from B(3),
the preferences for n voters is in the n-fold Cartesian product of B(3), denoted by
B"(3).

The next proposition states that an element of B"(3) is a profile allowed by a
ML-procedure; it lists the admissible ML-choices for each voter. A B"(3) profile only
requires a voter to rank each pair; voters need not sequence these pairwise rankings in
a transitive manner. I leave it as an exercise for the reader to prove the following
result.

PROPOSITION. Suppose there are three alternatives {a, b, c} where voters one and
two are decisive, respectively, over {a, b} and {b,c}. A ML-procedure is defined on
B"(3).

A ML-procedure, then, can be used by primitive voters who cannot even sequence
pairwise rankings. This fact allows us to identify the ML admissible procedures.
Namely, just as the domain R\{1, —2} excludes (x*+1)/(x +3) as an admissible
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function, we will find that the B"(3) domain for ML-methods immediately dismisses
most of the commonly used procedures.

To illustrate, consider the Borda Count (see [3, 14] for more details), which tallies
each voter’s ballot by assigning two, one, and zero points, respectively, to the voter’s
first, second, and third ranked candidates. The candidates are then ranked according
to the sum of assigned points. While the Borda Count is trivial to use with transitive
preferences, it is not a ML-procedure because it cannot be used (in this form) by a
voter with the cyclic preferences a >b, b>c¢, ¢ >a. After all, how many points
should be assigned to a? Similarly, the widely used plurality vote, where we vote for
our top-ranked candidate, is dismissed by (ML) simply because every voter must have
a top-ranked candidate. More generally, an unintended (ML) consequence is to
exclude all procedures that can deal only with rational voters! (The domain for such a
procedure is a proper subset of B"(3) rather than the full set.) What remains are only
those procedures acceptable to primitive societies.

This point is important. Understanding the true domain generated by Sen’s axioms
makes the source of his problem transparent. To use an analogy, recall the standard
puzzle involving nine dots arranged in a square:

The goal is to draw—without lifting the pencil—four straight line segments that pass
through all nine points. As long as we believe that the line segments must lie inside
the square, this task is impossible. But once we recognize the true domain for the
problem (the endpoints of the line segments may lie outside of the square), resolu-
tions are easy to find. Similarly, as long as we believe that the ML-domain requires
transitive preferences and that we are considering commonly used methods, Sen’s
assertion is difficult—probably impossible—to resolve in a simple manner. But once
we discover that the true ML-domain includes cyclic preferences and that ML-proce-
dures ignore transitivity, Sen’s conclusions become reasonable. After all, if transitivity
is not relevant to the input, why should we expect it in the output?

4. A Reinterpretation of Sen

Thus, the desirable, seemingly innocuous condition of minimal liberalism admits only
procedures acceptable to “unsophisticated societies.” But doesn’t axiom (U), which
explicitly requires voters to have transitive preferences, retrieve the orderly setting of
rational voters? Maybe there is a ML-mapping which becomes sufficiently sophisti-
cated (by avoiding cyclic outcomes) when restricted to transitive preferences? Clearly,
such a procedure must be able to differentiate between a sophisticated (transitive
preferences) and a primitive (cyclic) society.

To address this issue, notice that a ML-procedure ranks each pair of candidates. As
some of the rankings may be ties, extend B(3) by including the ties and denote the
new set by B(3). For instance, (a > b, b ~c, ¢ >a) is not in B(3) because of the
b ~c¢ ranking, but it is in B(3). With this notation, a ML-procedure becomes a

mapping

F:B"(3) > B(3).

Axiom (U) restricts the admissible profiles. Namely, if T(3) € B(3) represents the
transitive preferences, then (U) restricts the ML-procedures to

F:T"(3) - B(3).
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To determine whether (U) allows any ML-procedure to avoid cyclic outcomes, we
need to identify all ML-mappings that satisfy (P) and have at least the property:

F:T"(3) »B(3)\18(a>b,b>c,c>a),(b>a,c>b,a>c)}.

To analyze the effect of this (U) restriction, notice that because there are more
profiles in B"(3) than admissible outcomes, each mapping is many-to-one—all
profiles in each level set generate the same societal ranking.

DEFINITION. Two profiles p,, p, € B"(3) are ML-equivalent, denoted by p, ~ /1. P2,
if differences in voters” binary rankings occur only for voter one in the {b, c} ranking,
for voter two in the {a, b} ranking, and for any other voters in the {a, b} and/or {b, c}
rankings.

Two profiles, then, are equivalent if and only if a ML-procedure cannot distinguish
between them. Clearly, ~,,; is an equivalence relation partitioning the domain B"(3)
into equivalence classes. To prove the following theorem, which asserts that each
equivalence class has an entry in T"(3), the reader can mimic what was done with
Table 1 by filling in blanks to create transitive and cyclic preferences.

THEOREM 2. The equivalence classes defined by ~,, partition B"(3). Each
equivalence class has 4"~ profiles; at least one of these profiles has all transitive
voters and at least one other profile has all cyclic voters.

As each equivalence class contains a transitive profile, the (U) constraint does not
eliminate any equivalence class from the domain. But as the outcome of a ML
admissible procedure is strictly determined by the equivalence class (the procedure
cannot distinguish between profiles in the same class), a ML-method cannot detect
any change in the domain. Thus, the (U) restriction is useless because it makes no
difference for a ML-procedure; the image of F restricted to T"(3) is the same as that
of F on B"(3). Stated more simply, because a ML-procedure must service unsophisti-
cated voters, we cannot expect it to recognize rational preferences.

Armed with this knowledge, we can easily construct Sen-type examples. For
instance, start with the cyclic profile p, where everyone has the rankings b > a, ¢ > b,
a > ¢. According to unanimity condition (P), the only fair societal ranking is this cycle.
But Theorem 2 ensures there are transitive profiles ‘that are ML-indistinguishable
from p,; both profiles have the same cyclic outcome. To construct one of these
transitive profiles, first list the p, binary rankings recognized by a ML method.

Choice
Voter {a, b} {b,c} {a, c}
1 b>a — a>c
2 — c>b a>c
Others — — a>c

Next, find an indistinguishable transitive profile by appropriately filling in the blanks.
Notice, the entries of this table are identical to Table 1. Consequently, one choice of a
transitive profile is where voter one has preferences b > a > ¢ while all other voters
have the preferences a > ¢ >b. Both the cyclic and the transitive profiles provide
identical information for ML-procedures.

Theorem 2 describes the situation with k =3 candidates. Extensions to larger k
values follow in much the same way. To find the ML-domain, start with T"(k), the set
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of k-candidate, binary, transitive rankings for n voters. For each pair assigned to a
decisive voter, alter the other voters” binary ranking in all possible ways to define the
actual (rather than the intended) domain for ML-procedures. The rest of the proof of
an extension of Theorem 2 follows in the same manner.

Once k exceeds 3, the added number of pairs allows for highly imaginative
situations. For instance, Salles [17] develops a clever setting for k =4 where, by
appealing to the arguments of Hammond [8], Salles constructs a natural setting where
each of two voters is decisive over two pairs. He then finds a transitive profile that
generates two different cycles! The reader may wish to construct other examples to
illustrate the even more bizarre behavior that is possible if k > 5. (Start with primitive
voter profiles where the outcome is obvious; then replace the original profile with a
ML-indistinguishable transitive profile.) In all settings, the cycles are “fair” outcomes
for a “primitive” profile that is ML-indistinguishable from the constructed transitive
profile.

5. Arrow’s Theorem
The subtle cause of Sen’s problem explains all sorts of complexities in our daily life.

To illustrate, suppose an organization is to elect Ann, Becky, or Claire as their new
Chair, where the voters have the following rankings:

Number Preferences
31 A>C>B
30 B>C>A
3 C>B*>A

The plurality outcome, where a voter votes for his top-ranked candidate, is A > B > C,
with the tally 31:30:3. Our familiarity with this commonly used system makes it easy
to misinterpret the result. For instance, it seems obvious from Claire’s poor showing
that these voters strongly prefer Ann to Claire. They do not; their pairwise ranking is
C > A, with a 33:31 tally! Indeed, in continued defiance of the plurality outcome,
these voters also prefer C to B and B to Al

This example underscores a serious flaw of the plurality vote; it recognizes only a
voter’s top-ranked candidate. Totally dismissed is any information about a voter’s
relative ranking of each pair. Once this lost information is reclaimed, we discover that
most voters prefer Claire to either alternative. This suggests replacing the plurality
method with procedures that utilize this valuable data coming from pairwise compar-
isons. Maybe a reform procedure should satisfy the following axiom:

(ITA) Independence of Irrelevant Alternatives. Society’s relative ranking of a pair is
determined only by the voters” relative ranking of this pair.

It may seem easy to find many such reasonable procedures, but only one exists. This is
the content of “Arrow’s Impossibility Theorem,” one of the most widely-quoted
results in the social sciences.

THEOREM (ARROW [1]). Suppose there are at least three candidates, at least two
voters, and that all voters have transitive preferences. If a procedure satisfies (U), (P),
and (IT1A), and always has transitive outcomes, then one of the voters is a “dictator”
(societal outcome always agrees with the dictator’s preferences).
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It is not uncommon to find Draconian interpretations of this important assertion,
descriptions that exploit the fearful image of dictatorships. Such interpretations are
irresponsible: the theorem states only that it is impossible to invent a procedure where
the pairwise and general rankings always agree. The real issue is to understand why.

The problem can be addressed in the same manner used to analyze Sen’s assertion:
first find the domain for the functions satisfying (ITA), and then find the procedures
admitted by this domain. The explanation (see [12, 14, 16] for more details) is that,
unintentionally, (ITA) dismisses all information reflecting the crucial assumption that
the voters are rational! For intuition why this is so, suppose in the earlier “apple,
blueberry, and cherry pie” illustration, we learn that a person prefers b to a. Does
this person have cyclic or transitive preferences? Such a question is impossible to
answer because transitivity involves the sequencing of all pairs. Axiom (ITA), however,
specifically requires a procedure to consider only each voter’s relative ranking of each
pair. Consequently, (IIA) dismisses all sequencing information concerning the
rationality of voters. As true with Sen’s theorem, if a procedure devalues information
about the rationality of inputs, we cannot expect rationality in the conclusions.

While a result paralleling Theorem 2 is more difficult to prove, it asserts that a
ITA-procedure admits indistinguishable transitive and non-transitive profiles. As in
Section 4, this assertion follows by determining whether (U) allows some procedure to
distinguish between transitive and primitive preferences. This means that when the
pairwise parts from transitive preferences are separated, the procedure can recon-
struct them only in a transitive manner. Here we have a positive answer; if a
procedure pays attention only to the preferences of one voter—the dictator—this
always happens. However, once the preferences of least two voters are needed, no
procedure can distinguish between the transitive and non-transitive rankings. Again, if
a procedure does not recognize whether the inputs are rational, we cannot expect
transitive outputs. Moreover, the non-transitive outcome of a procedure can be
interpreted as “fairly” representing the nonexistent profile of voters with cyclic
preferences.

Let me illustrate this unexpected assertion with the pairwise vote. It is easy to show
that the pairwise vote satisfies (U), (ITA), and (P), and its outcomes cannot be
determined by a dictator. Therefore, we know from Arrow’s Theorem that not all of
the outcomes are transitive. To create an example, consider the three-voter Condorcet
profile (the subscripts on the pairwise rankings will be explained later):

Preferences | {a, b} ranking | {b, ¢} ranking | {a, c} ranking
a>b>c (a>D), (b >c), (a>c),
b>c>a (b>a), (b>c), (c>a),
c>a>b (a>b), (c>D), (c>a),
Outcome a>Db b>c c>a

In this table, each voter is assigned a row; the voter’s preferences are in the left
column. The other entries of the row specify the voter’s relative ranking for each pair
of candidates. By listing these pairwise rankings in columns identified with the pairs,
each pair’s majority vote tally is determined by the number of times a candidate is
preferred in the three entries of the appropriate column. This defines cyclic pairwise
election outcomes a > b, b > ¢, ¢ > a, where the tally for each election is 2:1.

To justify my assertion about Arrow’s Theorem, I must display a cyclic profile which
the pairwise vote finds indistinguishable from the Condorcet profile and where the
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cyclic outcome is “fair.” To do so, notice that the pairwise vote respects anonymity; it
cannot determine who cast what vote. So, by permuting the three entries of each
column in any manner, I define other profiles that the pairwise vote finds indistin-
guishable from the Condorcet profile. In particular, the pairwise voting procedure
cannot distinguish the Condorcet profile from the primitive voter profile where the
preferences of voter j are identified by the subscript j.

Consequently, as far as the pairwise vote is concerned, the “true” profile could be
where primitive voters one and two have the cyclic preferences & ={a >b, b >c,
¢ > a} while primitive voter three has the reversed cyclic preferences &° = {b > a,
¢ >b, a> c}. This possibility defines a single-issue situation where two voters believe
in & while the last voter disagrees. The only “fair” outcome for this reconstructed
profile is & by a 2:1 vote—it is the cycle. This “fair outcome” must hold for all
profiles constructed from these binary rankings. (For more details, see [12, 14].)

This example not only illustrates how (IIA) vitiates the critical assumption that
voters have transitive preferences, but also raises doubts about any procedure based
on pairwise rankings. After all, if the restricted information used by the pairwise vote
drops the assumption that voters are transitive, then why should we expect rational
outcomes? This concern extends to all procedures using the pairwise vote, such as
tournaments or even an agenda for a meeting which specifies an order to sequentially
vote upon pairs of alternatives.

Armed with this insight, the reader can identify other examples, coming from
choice theory, economics, and elsewhere, from which we should expect disturbing
outcomes. The true message is to expect trouble whenever the actual (rather than
intended) domain for a procedure admits nontransitive preferences.

6. Resolutions

By understanding the source of Sen’s and Arrow’s results, we can not only entertain
hope for resolutions, but also understand why certain approaches have failed—miser-
ably. For instance, a widely used approach in choice theory is to further restrict the
profiles. This approach, however, misses the point. While stronger profile restrictions
may circumvent Sen’s, Arrow’s, and related problems, they fail to provide interesting
answers. This is because the admitted procedures are appalling to the standards of
democracy. (This is illustrated by the quasi-dictatorial, highly stilted procedures
required by the results in [7, 9, 10, 11, 14].) Remember, the real damage is caused
because (ML) and (ITA) exclude reasonable procedures while retaining only those that
are crude enough to be used by primitive societies. But when restricted to crude
procedures, we cannot expect sophisticated outcomes. If our building tools are limited
to sticks and stones, don’t expect to construct a modern 100-story skyscraper.

A realistic resolution is more challenging and constructive. As we discovered,
axioms exclude procedures. In particular, we learned from Sen’s and Arrow’s choices
of (ML) and (IIA) that even appealing axioms can be useless if they exclude
reasonable procedures. We need, then, to achieve a balance between the choice of the
axioms used to model a desired situation and the kinds of procedures they admit.

As this explanation of Arrow’s and Sen’s theorems provides new tools and directions
to resolve Arrow’s and Sen’s concerns, I encourage the reader to explore these issues.
To do so, remember that the cost of separately determining societal rankings for
subsets of alternatives is to, inadvertently, admit non-transitive preferences. Thus, new
axioms should promote connections among these sets. For instance, instead of
examining only the pairwise rankings, maybe we should sum the tallies of each
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candidate over all pairwise elections. (See [12, 13, 14]) This change sufficiently
relaxes Arrow’s (ITA) condition to admit reasonable procedures such as the Borda
Count. (While this procedure allows the cyclic voter to cast ballots, I leave it to the
reader to show that this version of the Borda Count effectively discards these ballots
as they amount to a complete tie.)

An alternative direction is to recognize that Sen’s axiom (ML) separates the
decisions for certain pairs, while (P) insists on connections. By correcting this
incompatibility, resolutions follow. For instance, if society grants me the right to
choose my shirt, why are others comparing one of my alternatives with other
alternatives? This suggests relaxing (P) to the following axiom:

(P*) Relaxed Pareto. If an individual is given decisive rights over a pair {a, b}, then
the Pareto condition (P) does not apply to any pair including either a or b.

It is easy to construct procedures satisfying (P*), (ML), and (U) where the
outcomes are transitive. Rather than proposing procedures, I advance this axiom to
illustrate how to use this new structure to generate resolutions.
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If someone mentions irrational number, what do you think of? Perhaps you recall a
standard example, V2, and a proof by contradiction that has to do with odd and even
numbers. Or perhaps what comes to mind is that the Pythagoreans were discomfitted
by the irrationality of V2 because it proved that not all geometric relationships could
be described in terms of whole numbers. In this paper we will touch on both of these
aspects of irrationality, recounting a bit of the history, and showing some variations on
the traditional approaches to these topics. Although the subject is a familiar one, it is
rich in interesting ideas. The purpose of this paper is to popularize some irrational
ideas that do not appear to be well known, including connections to eigenvalues and
dynamical systems, and to bring them together with some of the ideas that are so
familiar.

Incommensurability and Infinite Descent

The Pythagoreans encountered the idea of irrationality in geometry in the context of
commensurability. Initially, in harmony with their all is number doctrine, they
embraced the geometric position that any two segments are commensurable, meaning,
exactly measurable with a common unit. In modern terms, that would mean that
relative to an arbitrary unit of measurement, every segment has rational length. Of
course that is false, and the very notion seems quaint to our ears. But it was an
unexpected discovery to the Greeks, and had fundamental mathematical and philo-
sophical ramifications. According to one oft-repeated account, the demonstration of
the existence of incommensurable segments was so devastating that the bearer of the
bad news was put to death for his discovery.!

To understand the importance of commensurability to the Pythagoreans, one must
bear in mind their reliance on whole number relationships. In particular, the concept
of proportion was formulated in integral terms: the fundamental observation is that
a:b and na:nb are in equal proportion. Then clearly ma:mb and na:nb are also
equal. In geometry, with the quantities ma and na representing line segments, the
common divisor @ becomes a common unit of measurement.

1As retold by Choike [4], the discoverer, Hippasus of Metapontum, was on a voyage at the time, and his
fellows cast him overboard. A more restrained discussion by Boyer [2, pp. 71-72] describes both the
discovery by Hippasus and his execution by drowning as mere possibilities.
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Proportionality of Similar Triangles As a concrete example of this idea, we will
derive the proportionality of the corresponding parts of similar triangles, following the
approach of Aaboe [1, pp. 42-43]. Let ABC and A'B'C’' be triangles whose
corresponding angles are equal, and suppose that BC and B’C’ are measured by the
common unit a. Then for some integers n and m, BC =ma and B'C’' =na, as
illustrated in Ficure 1.

A

B a a a a a a a C

FIGURE 1
Triangles with commensurable bases

Focusing on ABC for a moment, observe that the subdivision of BC into m equal
segments permits us also to subdivide AC into m equal segments: simply construct
parallel lines as shown in Ficure 2.

A A A
mc mb
B C B C B ma C
FIGURE 2 FIGURE 3 FIGURE 4
Subdividing AC Parallelograms ABC Tiled

The intersections of these parallel lines with AC are equally spaced along that side.
This can be seen by constructing line segments parallel to BC as in Ficure 3. Each
segment has length @, because it completes a parallelogram with base of length a
along BC. That makes the triangles lying along AC congruent, and so verifies that
their sides on AC are all of equal length, say b.

And now with two sides of the triangle subdivided, we can partition the remaining
side into m equal parts of length ¢ in two ways, using lines parallel to either AC or
BC. The result is actually a tiling of ABC by congruent triangles, with m tiles along
each side (Ficure 4). In each tile, the sides are a, b, and ¢. Thus AB =mc and
AC =mb.
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The same construction carried out in A'B’C’ results in a tiling with n copies of the
tile along each side (Ficure 5). Moreover, the tiles used in each triangle are congruent.
By construction they clearly share equal corresponding angles, as well as one side, a.
This leads to A'B' =nc and A'C" = nb, and proves that the sides of the triangles are
in equal proportion. For example, BC : B'C' =ma:na =mb:nb =AC: A'C".

A

B C B’ c’

FIGURE 5
Tiled Triangles

If it is assumed that all pairs of segments are commensurable, this argument
establishes the proportionality of similar triangles. More generally, the presumption of
commensurability justifies treating all proportions as ratios of integers. The discovery
of incommensurable segments revealed a fundamental flaw in this approach to
proportionality, and led ultimately to the much more sophisticated formulation that
appears in Book V of Euclid.

Infinite Descent No one really knows how incommensurability was first discov-
ered. In [4], there is a retelling of the suggestion of von Fritz [9] that the pentagram
was the first geometric figure shown to have incommensurable parts. The argument
given there uses the idea of infinite descent. Starting with an initial figure, we
construct another similar figure that is demonstrably smaller in size. Two parts of the
original figure are assumed to be measurable with a common unit, and then it is
shown that this same unit must measure the corresponding parts of the smaller figure.
By repeating the construction, we can eventually reduce the figure so far that the
diameter is less than the common unit, whereupon we contradict the fact that this unit
must measure two sides of the figure. In [4] this argument is made using a pentagram.
Here we will give a somewhat simpler construction starting with an isosceles right
triangle. An essentially equivalent construction, working in a square, is presented
in [3].

Consider Ficure 6, showing an isosceles right triangle ABC. The point D has been
constructed so that BD = BC. Through D we draw a line parallel to leg AC, which
meets BC at point E. Now construct a square having CE as one side (see Ficure 7),
thus defining points F and G.

For reference, we have drawn the auxiliary lines CG and CD in Ficure 8. Observe
now that CG and GD have equal length. Indeed, with BC and BD equal (by the
construction of D), we know that angles DCB and CDB are equal. Also angles GCE
and GDB are equal (and each is half a right angle). Thus, triangle CDG is isosceles,
with CG and GD equal, as asserted. To complete the construction, add point H to
define a parallelogram ADGH (Ficure 9). Then triangles FGH and FGC are
congruent, so that CG and GH are equal. Combined with the earlier result, this
shows that all sides of parallelogram ADGH are equal to CG.
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\ D \ D
F G
c E B C E B
FIGURE 6 FIGURE 7
Isosceles right triangle CEGEF is a square
A A
\ D \ D
H
F G F G
c E B c E B
FIGURE 8 FIGURE 9
Triangles BCD and GCD are isosceles ADGH is a parallelogram

To summarize the result of the construction, Ficure 10 shows the essential
segments, with AH, AD, HG, and GC all equal in length. Triangle CGH is an
isosceles right triangle. If a unit evenly measures BC and AB, then it must also
measure their difference, AD. The unit therefore measures legs HG and CG of
CGH. Furthermore, since the unit measures both AC and AH, it measures their
difference, CH, the hypotenuse of CGH. Therefore, any unit that measures the parts

A
D

H
G

C B
FIGURE 10

A unit measuring AB and BC also measures CG and CH
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of triangle ABC must also measure the parts of the smaller similar triangle CGH.
This completes the construction. The incommensurability of AB and BC now follows
as discussed earlier.

The incommensurability argument also leads to an algebraic demonstration of the
irrationality of V2. Assume that there is a unit that divides evenly into the leg and the
hypotenuse of the original triangle, say with n units along AB and m on BC. Then
AD must be measured by n —m units, as must AH, GH, and GC. Furthermore, HC
is then measured by m — (n —m) = 2m — n units. Since CHG and ABC are similar
triangles, we conclude that n/m =(2m —n)/(n —m). This same conclusion can be
reached using algebra. Suppose that @ and b satisfy a*> = 2b*. Then a® — ab = 2b* —
ab hence a(a—b)=b(@2b —a). This leads to our earlier conclusion: a/b=
(2b —a)/(a —b). Now since b < a, we see that 2b —a < a. Since a <2b, a —b <b.
That is, the numerator and denominator of (2b — a)/(a — b) are each less than the
corresponding parts of a/b. The conclusion is summarized as follows: Any ratio a /b
representing V2 leads to another ratio with strictly smaller numerator and denomina-
tor. If @ and b are integers, so are 2b — a and @ — b. Thus, given any integer ratio for
V2 we obtain an equal ratio of strictly smaller integers. This is clearly an impossible
situation, so V2 must have no such representation.

The preceding argument appears in [10, pp. 39-41]. It is essentially the same as
one used by Fermat to argue the irrationality of V3 (see [2, pp. 353-354]). Fermat
went on to make great use of the notion of infinite descent in number theory. In
contrast, our discourse now heads in a different direction—to the use of matrices.

A Dynamical View of Irrationality

One facet that both the algebraic and geometric infinite descent arguments share is
the propagation of pairs (a,b). Indeed, the generation of each new pair from its
predecessor is of a linear nature. It is natural therefore to represent it as a matrix

_i _?], and represent the pair (a, b) as a column

I R

describes the propagation used in our earlier arguments. Now we make two observa-
tions about A. First, as an integer matrix, it preserves lattice points. That is, if v is a
vector with integer components, then so is Av. Second, the line L described by
a=vV2b is an eigenspace, so its points are also preserved by A. Actually we can say
more: A is a contraction on L. Simply observe that

-1 2f|V2 | 2=V | |V2(V2-1)| o V2
N R P

Since the eigenvalue V2 — 1 is between 0 and 1, the effect of A on points of L is to
reduce their magnitude.

The infinite descent argument can now be stated in dynamical terms. Starting with
any first quadrant point (@, b) on L, repeated application of A generates a sequence
of points that remain on the line while converging to 0. If the initial point were a
lattice point, all of the successive points would be as well, leading us to the impossible
situation of an infinite sequence of distinct lattice points converging to the origin. We
conclude that there are no lattice points on L.

operation. Let A be the matrix [
vector. Then
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Dynamics of A and A™' There is a bigger dynamical picture. Although there are
no lattice points on L, there are plenty elsewhere in the plane. Repeated application
of A to each must generate a sequence of lattice points, called an orbit. Where do
these orbits lead? It is easy to show that A has another eigenvalue with magnitude
greater than 1, and a corresponding line M of eigenvectors. Each element of the
plane can be expressed as a sum of elements of L and M. Under repeated application
of A, the L component dwindles away to nothing, while the M component grows
without bound. Therefore, almost all of the points in the plane, including every one of
the lattice points, march off to infinity under the action of A. This is the dynamical
systems view of A. Its repeated application to the plane sweeps everything not on L
out to infinity along M, while the points on L all flow toward the origin. In
combination with the fact that A preserves integer lattice points, this shows that L
can contain no lattice points other than 0.

Somewhat paradoxically, although the dynamic description is given in very geomet-
ric terms, it is not easy to depict accurately on a graph. For one thing, the eigenvalue
corresponding to M is negative. As A is repeatedly applied to a vector, the M
component alternates in sign. The resulting orbit jumps back and forth, progressing in
one direction along M on the even jumps, and in the opposite direction on the odd
jumps. So “marching to infinity” is not really the right image. Rather, the points
leap-frog infinitely far along M in both directions. Looking just at the landing points
of the even leaps, the points seem to follow a flow, as illustrated qualitatively in
Ficure 11. This really shows the dynamic behavior of A®. It gives some sense of the
dynamics of A, as long as you remember what is happening on the odd leaps.

FIGURE 11
Dynamics of A2

The magnitude of the negative eigenvalue presents another obstacle to forming an
accurate graphical representation of the dynamics of A. Except for points very close
to L, the M component grows so rapidly that the L component becomes completely
invisible after only one or two iterations. That is, if the scale is made large enough to
show an initial point and two iterates, relative to that scale, even the initial L
component will be hard to see. This effect is illustrated in Ficure 12, which shows a
square, and its images under A and A®. The second image is hard to distinguish from
a heavily inked line. Careful inspection reveals the effects of the negative eigenvalue,
as the labeled vertices alternate orientation around the square and its successive
images. However, with only two applications of A illustrated, there is not much of a
basis for visualizing the overall structure of the orbits. In fact, the situation is more
easily described than drawn. From just about any starting point, the orbit takes only a
step or two to get right next to M. From that point on, the orbit jumps off to infinity,
alternating between one end of M and the other.
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FIGURE 12
Applications of A to a square S

As stated earlier, A carries each lattice point to another lattice point. As a matter of
1 2
1 1
also has integer entries. The dynamics of A™! are the reverse of those of A: all the

points off M are swept out to infinity along L, while points on M collapse into the
origin. Reasoning exactly as before, M can contain no lattice points. Therefore, under
the action of A™', every lattice point generates a sequence that asymptoticall

approaches L. This provides a simple way to generate rational approximations to \/Qy

fact, the set of lattice points is actually invariant under A, because the inverse [

a

b
a
of points | ,* | approaches L, the ratios a, /b, converge to V2. For example, starting
o [1] R
with [ 0] we generate the sequence

.
EE
EREA RN

Begin with a lattice point and repeatedly apply A~'. Since the resulting sequence

The last pair shown approximates V2 as 114243 /80782. Squaring the numerator
and denominator we find that 1142432 = 13051463049 = 13051463048 + 1 =2-
807822 + 1 so the ratio is indeed very close to V2. This same sequence of rational
approximations was presented in [10, pp. 39-41], derived by an approach closely
related to ours, but without using matrices. The sequence also appears in [8]. There, a
qui‘t/e_ different (and very interesting) scheme is used to find rational approximations
to V2.
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Generalizations

The foregoing matrix approach can be generalized in several ways. First we will
consider square roots of integers other than 2. Then we will look at the more general
case of rational roots of polynomials with coefficients that are either integers, or
Gaussian integers. Finally, we generalize from roots (which correspond to linear
factors) to the more general question of factorization, as described by Gauss’s Lemma.

To begin, let us see how the preceding dynamical discussion of the irrationality of V2

k n
1 -k
before. One_eigenvalue is Vn —k and the corresponding line L of eigenvectors is

generalizes to Vn . In place of A take the matrix [ - and everything works as

spanned b v . The other eigenvalue is —(k + Vn ) with the corresponding line M
% Y1, g P g

spanned by ‘/;1 . In order to obtain the same dynamic behavior as before, we

require the first eigenvalue to have magnitude less than 1. We can achieve this by
taking k to be the greatest integer in Vn . In the special case that n is a perfect
square, this results in an eigenvalue of 0. Then there are lattice points on the line L,
but they are all mapped by A to 0 in a single jump. In any other case, that is, if n is
not a perfect square, we see that there are no lattice points on L, and deduce that Vn
is irrational, as before. We have therefore shown that an integer is either a perfect
square or has an irrational square root.

One way to view the choice of k in the preceding is as follows: we have a matrix
with an eigenvalue that may be larger than 1. By subtracting an integer multiple of the
identity matrix, we can translate the eigenvalues to obtain a positive eigenvalue less
than 1. This idea leads to a proof of the well known, more general result that a monic
polynomial with integer coefficients has real roots that are either integers or irrational.
Before proving this result, we need two lemmas. The first allows us to treat a general
polynomial in the context of matrix algebra, while the second assures us the equivalent
of lattice points as eigenvectors.

LEMMA 1. Every monic polynomial with integer coefficients is the characteristic
polynomial of an integer matrix.

Proof: The proof is constructive. If the polynomial is p(x)=x"+c,_;x""}

+ =+ +¢, then it is the characteristic polynomial of the so-called companion matrix
(see [5], for instance).

0 1 0 0
0 0 1 0
C= .
0 0 0 1
—Cy TC TCy “Ch-1

It is easy to verify that this matrix has the desired characteristic polynomial
by expanding the determinant of (C —AI) in the first column and using in-
duction. Additional insight comes from observing that if « is a root of p, then
[1 @ a® - a" 'I" is an eigenvector of C with eigenvalue a. This fact is easily
verified by a direct calculation.

LEMMA 2. Let A be an integer matrix with rational eigenvalue A. Then there exists
an integer eigenvector u.
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Proof: The matrix A — AI has determinant 0. Therefore, over the field of rationals,
it has a nontrivial null space. A nonzero vector in that null space has rational entries,
and so a suitable integer multiple will have integer entries. The result is an integer
eigenvector u for A and A.

We state the generalization of the argument concerning Vn as follows:
THEOREM 1. A real eigenvalue of an integer matrix is either an integer or irrational.

Proof: Proceed by contradiction. Let A be a rational eigenvalue of the integer
matrix A, and assume that A is not an integer. Without loss, we may assume that
0 <A <1, for if not, simply replace A with A —|A|I. (|-] is the greatest-integer
function.) The second lemma shows that there is an integer eigenvector u correspond-
ing to A. If we apply A to u repeatedly, we generate an infinite sequence of distinct
integer vectors that converges to 0. This is clearly impossible. Therefore, every
rational eigenvalue of A must actually be an integer.

Complex Roots Combined with the first lemma, Theorem 1 shows that for a monic
polynomial with integer coefficients any real roots are either integer or irrational.
What about the complex roots? To simplify the discussion of the complex case, it will
help to use the notation Z for the integers, and Z[i] for the Gaussian integers, that is,
complex numbers with real and imaginary parts in Z. Similarly, we will denote by Q
the rational numbers, and, by Q[i], the complex numbers with rational real and
imaginary parts. Now let us return to the question of complex roots. If a monic
polynomial with integer coefficients has a root in Q[i], must that root actually lie in
Z[i]? The answer is yes, and the argument is essentially the same as what has gone
before. Instead of matrices with entries in Z, we consider matrices whose entries are
in Z[i]. It is easy to modify the lemmas given earlier to apply to this new situation.
First show that every monic polynomial with coefficients in Z[i] is the characteristic
polynomial of a matrix with entries in Z[i]. Then show that when such a matrix has an
eigenvalue in Q[i], it has an eigenvector with entries in Z[i], as well. Finally, prove
that for a Gaussian integer matrix, an eigenvalue in Q[i] must actually be in Z[i]. As
before, it may be assumed without loss of generality that the eigenvalue has magni-
tude less than 1, this time translating by the nearest Gaussian integer, if necessary.
The argument concludes just as before.

Gauss’s Lemma  All the foregoing results about roots of polynomials can evidently
be formulated in terms of linear factors, instead. Thus, if a monic polynomial with
integer coefficients has a linear monic factor with a rational constant term, it is
actually an integer constant term. This is a special case of a more general result known
as Gauss’s Lemma: If f(x) is a monic polynomial with integer coefficients which
factors as g(x)h(x), where g and h are monic polynomials with rational coefficients,
then in fact g and h have integer coefficients. The proof that is usually given for this
result makes use of unique factorization. Here, using matrix methods, we can give an
alternate proof that does not explicitly depend on unique factorization.

The proof is formulated in terms of algebraic integers: complex roots of monic
polynomials with integer coefficients. Our preceding results say that an algebraic
integer in Q must be in Z, and an algebraic integer in Q[i] must be in Z[i]. The first
of these results can be applied to prove Gauss’s lemma, once we show that the
algebraic integers are closed under addition and multiplication. The idea will be to
show that the coefficients of factors g and h are algebraic integers since they are
combinations of the roots. That will make the coefficients rational algebraic integers,
and hence integers.
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In addition to its role in the earlier lemmas and results, matrix algebra also provides
a convenient means to establish that the algebraic integers are closed under addition
and multiplication. It is clear from Lemma 1 that algebraic integers can be character-
ized as eigenvalues of matrices with integer entries. To deal with sums and products of
these eigenvalues, a useful matrix operation is the tensor product, also called the
Kronecker product. Given two matrices A and B, the Kronecker product A ® B is
defined as follows: Replace each entry a;; of A with an entire block of entries, given
by the product a;;B. The resulting matrix is A ® B. There is a nice discussion of
Kronecker products in [6]. Here, we require only one identity: (A ® BXC ® D) =
AC ® BD, which is valid as long as the products AC and BD exist. The proof is a
straightforward exercise. With the identity we can prove the following lemma.

LEMMA 3. If A and p are algebraic integers, then so are Au and A+ .

Proof: Suppose that A and p are algebraic integers. Then there are integer
matrices A and B, and integer vectors v and w, such that Av=Av and Bw = pw.
Therefore (A ® B)Xv ® w) = (Av) ® (Bw) = Au(v ® w). This shows that Au is an
eigenvalue of the integer matrix A ® B, and hence, is an algebraic integer. In a similar
way, it is easy to show that A + w is an eigenvalue of the integer matrix A ® I +1® B.
Therefore A + u is an algebraic integer.

Gauss’s lemma is now easily proved.

THEOREM 2. Let f be a monic polynomial with integer coefficients, and suppose
f=gh where g and h are monic polynomials with rational coefficients. Then the
coefficients of g and h are actually integers.

Proof: The roots of f, and hence those of g and h, are algebraic integers. The
coefficients of g and h are elementary symmetric functions of the roots, and so can
be constructed from the roots using addition and multiplication. This shows that the
coefficients of g and h are algebraic integers. But they were assumed to be rational.
Thus, they are in fact integers, as asserted.

Integrally Closed Domains We conclude with one further generalization, and a
question. The foregoing material can be understood in the context of integral domains
and fields of quotients (see, e.g., [7]). In our earliest results, the coefficients of the
polynomials were integers, and we showed rational roots had to be integers as well.
Observe that the rationals are the field of quotients for the integers. This same
relationship extends to the results on Gaussian integers. The quotient field for Z[i] is
Qli]. Our earlier result states that for a monic polynomial over Z[i], any root in the
quotient field of the Gaussian integers must itself be a Gaussian integer.

In both cases, polynomials are considered over an integral domain, and the field of
quotients contains no roots other than those that were already present in the integral
domain. Proceeding with this more general setting, consider an integral domain D
within its field of quotients F. Define A € F to be integral over D if it is a root of a
monic polynomial with coefficients in D, and observe that each element of D is
integral over D. If these are the only elements integral over D, then D is said to be
integrally closed. That is, an integral domain D is integrally closed if it contains all the
elements of the field of quotients which are integral over D. The earlier results
showed that the integers and the Gaussian integers are both integrally closed.


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 70, NO. 2, APRIL 1997 103

Now the question arises: what is the most general setting for the matrix results
presented earlier? Lemmas 1 and 2 still hold if we replace the integers by an integral
domain D and the rationals by D’s field of quotients. The proofs of Theorem 1 and its
extension to the complex case are not so easy to generalize, for they depend on
analytic properties that are peculiar to the integers and the Gaussian integers. To
illustrate the difficulties, we consider two examples. Each is a quadratic extension of
the integers, that is, a domain of the form Z[\/ﬁ = {n +mvk|n, m € Z)} where k is a
square-free integer. The field of quotients is @[vk ], defined analogously. Tt is known
that Z[vk ] is integrally closed just when k # 1 (mod 4). (See, e.g., [7].)

For the first example, k = —5, and the domain Z[iV5] is integrally closed. That
means that A € Q[iV5 ] is a root of a monic polynomial over Z[iV5 1 only if it is in
Z[iV5]. To demonstrate this, it is tempting to mimic the proof of Theorem 1. Things
go awry right at the start, where we want to assume that [A|<1. In the original
argument, this step was justified by the observation that A was at most one unit away
from an integer. Unfortunately, that is not true for Z[iV5 1. Picture the elements as a
lattice in the complex plane. The lattice points are separated by one unit horizontally,
but by V5 units vertically. That means they are too far apart. In particular, if
A= .5+ 5iV5, the nearest elements of the integral domain are more than one unit
away. This foils our desire to find a matrix with entries in Z[iV/5] and with an
eigenvalue of magnitude less than unity in the quotient field. The argument breaks
down because we are unable to produce an appropriate matrix to act as a contraction.

The second example considers k =5, and the result cited earlier says that ZIV5 ] is
not integrally closed. This is easy to see directly: the polynomial ¢*>—¢—1 has
coefficients in Z[5 ], and roots (1 + v5) /2 in Q[V5 ] but not in Z[5 ]. What happens
if we try to follow the proof of Theorem 1 for this example? Observe that all the
action takes place on the real line, so the elements of QIv5 ] are all within one unit of
an integer, and hence, within one unit of an element of the domain ZIV51. As in
Theorem 1, we can construct a matrix with an eigenvalue of magnitude less than 1,
and which acts as a contraction on the corresponding eigenspace. In particular, a point
of that eigenspace with all entries from Z[y5] must generate a sequence of such
points converging to the origin. However, for the current example, that presents no
contradiction. The elements Z[V/5] are not discretely spaced on the real line, and in
particular, have 0 for a limit point. So for this example, the entire proof of Theorem 1
remains valid, but failing to result in a contradiction, offers no assurance that ZIV51is
integrally closed.

As these two examples highlight, Theorem 1 and its extension to the Gaussian
integers depend on a coincidence of special properties. In addition to the underlying
structure exposed in Lemmas 1 and 2, we require a metric on the quotient field
satisfying two conditions: (1) the elements of the integral domain cannot get arbitrarily
close to 0 (nor hence to any other domain element); and (2) the elements of the
domain must get within one unit of every element of the field. In other words, the
proof demands that the integral domain elements are neither too close together nor
too far apart. This combination of properties does occur for Z and Z[i]. We don’t
know if there are any other domains for which the same argument can be made to
work, and so we leave it as an open question: Other than Z and Z[i], are there integral
domains for which the field of quotients satisfies the two conditions above? Clearly,
any such domain will have to be integrally closed. That observation prompts another
question: Given an integral domain D, under what conditions is there a metric on the
field of quotients satisfying the two conditions above?
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Conclusion

This paper has considered several aspects of irrationality. Starting with the earliest
history, we reviewed the formulation of irrationality in the context of incommen-
surable segments in geometry. A geometric argument based on infinite descent was
reformulated in the now familiar setting of dynamical systems, using matrix algebra for
the descent mechanism. In that context, we saw natural extensions from the ring of
integers to other structures of modern algebra. In the initial situation, we considered
monic polynomials with integer coefficients, and saw that irrational numbers emerge
as roots lying outside of Z. The more general setting concerns the monic polynomials
over an integral domain D and the nature of roots that are outside of D. The cited
result in this area, namely that Z[vk ] is integrally closed for square-free k so long as k
is not congruent to 1 mod 4, suggests an algebraic subtlety that is absent from the
simple dynamic arguments of Theorem 1. Perhaps it should not surprise us that these

arguments proved ineffective for Z[V51] and Z[iV5 ]. It remains to be seen whether
the dynamic approach can be successfully applied in the more general setting.
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1. Introduction

As early as the first century, scholars such as Heron of Alexandria had shown interest
in triangles with rational sides and rational areas. These have become known as
rational triangles or Heron triangles. Multiplying by common denominators, the study
of Heron triangles reduces to the study of triangles with integer sides and integer
areas. We refer to triangles whose integer sides form an arithmetic progression and
whose areas are integers as arithmetic triangles. This particular class of Heron
triangles has attracted considerable attention.

In the seventh century, Brahmagupta gave a systematic analysis for the special case
of triangles with consecutive integer sides [4]. In the nineteenth century, H. Rath,
R. Hoppe, and L. Aubry did considerable work with arithmetic triangles. In fact
Hoppe noted formulas that describe the sides of arithmetic triangles [5]. In this paper
we will see how all such triangles arise in terms of right triangles and we will derive
Hoppe’s formulas.

Let us call a triangle d-arithmetic if its sides have lengths ¢, ¢ +d, and ¢ + 2d,
where ¢, d, and the area are integers. Although d # 0 it will be convenient to allow
negative values of d; thus a d-arithmetic triangle is also (—d)-arithmetic. The smallest
example of such a triangle is the right triangle with sides of lengths 3, 4, 5. It is known
(and we will show) that except for similarity this is the only right triangle that is
arithmetic. Another example is the triangle (known to Heron) whose sides measure
13, 14, and 15, and whose area is 84; both of these triangles are 1-arithmetic. We will
show how any arithmetic triangle that is not a right triangle gives rise to two right
triangles with integer sides. Recall that a Pythagorean triple (PT for short) is a triple
(a,b, ¢) whose components are positive integers satisfying the equation a* +b* = c?,
Thus we will see how every arithmetic triangle gives rise to two companion PTs. We
will also see, conversely, how every PT (together with its companion PT) gives rise to
an arithmetic triangle. PTs are described algebraically in [3] where middle compo-
nents are not restricted to be positive. We adopt this convention here as well.

We will also describe how all arithmetic triangles can be found using a parametric
representation. This representation enables us to show that primitive d-arithmetic
triangles exist if and only if the Diophantine equation x* — 3y* = d* has a primitive
solution, which is the case if and only if |d|=1 or |d|is a product of primes p, = +1
(mod 12). It is not surprising that arithmetic triangles have been a fascination through
the centuries; simple geometric problems such as this have often given rise to
interesting number-theoretic considerations.

2. From an Arithmetic Triangle to a PT

Suppose that we have a d-arithmetic triangle. Assume it is acute; we shall look at the
obtuse case in a moment. Let a perpendicular of length @ rise up from the side of
length ¢ + d to the opposite vertex, as in Ficure 1. This divides the arithmetic triangle
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c+2d c c+2d c

c+d ct+d
@ d<0 b) d>0

FIGURE 1
Acute arithmetic triangles

into two right triangles, with base lengths x and b as shown in Ficure 1. Then
x=b + 4d, because

22=(c+2d)* —a®=(c*—a®) +4cd + 4d* =b2 + 4d(x +b);
adding 4d® — 4dx to both sides we obtain
(x—2d)*=(b+2d)".

Therefore x —2d = +(b + 2d). Since the negative choice is not possible (x = —b
leads to a contradiction) we obtain x =b + 4d.

We claim that @ and b are integers. To see this, notice that ¢ +d =2b +4d so
that 2b is an integer which means b is at least rational. Since the area (a/2)(c +d) is
an integer it follows that a is rational as well. Now (2a)? = 4¢® — (2b)* is an integer
so 2a (which is rational) is an integer. Let a =a,/2, b=b,/2, and ¢ =c¢,/2. Then
(a;,by,c)) is a PT so that one of a;,b, must be even (otherwise the equation
a} + b} = ¢} taken modulo 4 gives a contradiction). Thus a or b is an integer and so a
and b are integers, since a® + b® = c?,

If the arithmetic triangle is obtuse we extend the side of length ¢ +d so that a
perpendicular of length a will rise from one end to meet the opposite vertex as shown
in Ficure 2. Computation shows that x =b + 4d and a and b are integers, as in the
acute case.

c+d ct+d
b X
(@) d<0,x<0 b) d>0,b<0

FIGURE 2
Obtuse arithmetic triangles
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In either case
d=(c—2b)/3, (1)

as is easily seen: we have b +4d =x =c +d — b, from which (1) follows. From this
equation and the expression x =b + 4d we find that

x=(4c—5b)/3 and ¢+2d=(5¢c—4b)/3.
Thus the pairs of right triangles in Ficure 1 or 2 correspond to the PTs

(a,b,c¢) and (a,(4c—5b) /3, (5¢—4b)/3). (2)
The triples in (2) are referred to as companion PTs. A formal definition is given
below. Starting with an arithmetic triangle, its companion PTs can be found from the

values ¢ and d by using (1), (2), and the Pythagorean relation. Ficure 3 illustrates this
with the 11-arithmetic triangle having sides of length 15, 26, 37.

12 15

19 26
35

FIGURE 3
(12, 35, 37) with companion (12, —9, 15)

3. From a Primitive PT to an Arithmetic Triangle

Let us see how any PT (a, b, ¢), such that ¢ — 2b = 3d for some integer d, gives rise
to a d-arithmetic triangle. In this case the second triple in (2) has integer components
and satisfies the Pythagorean relation (as is easily checked). Note that 5¢ — 4b > 0. If
4c—5b > 0 then the two right triangles corresponding to the PTs in (2) may be
joined at their common leg to form an arithmetic triangle in Ficure 1. If 4c — 5b <0
then x <0 and we obtain an obtuse arithmetic triangle in Ficure 2(a). Ficure 2(b)
depicts the case when b <0. The area of each of these (non-right) triangles is
alc +d)/2 = a(b + 2d), which is an integer.

We are led to the following definition. A PT A =(a,b,c) is d-arithmetic if
¢ —2b=3d for some integer d. Unlike arithmetic triangles a PT cannot be both
d-arithmetic and (—d)-arithmetic. If A is an arithmetic PT then

A°=(a,(4c—5b)/3,(5¢ —4b)/3) (3)
is the companion of A. It is easily checked that A° is also an arithmetic PT; in fact, if

A is d-arithmetic then A° is (—d)-arithmetic. For example, (60, 11,61) is 13-arith-
metic and has companion (60, 63,87) which is (— 13)-arithmetic.
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We also have A°° = A. This is best seen by writing (3) in matrix form,

c

a 1 0 0 a
b| =10 -=5/3 4/3(|b|,
c 0 —-4/3 5/3||c

and noting that the matrix is self inverting.

It is well known that one of the two legs a, b of any PT must be in 3Z (i.e., a
multiple of 3) [3]. If we assume that A is arithmetic and primitive (so that a, b, and ¢
are relatively prime) then a € 3Z; the alternative b € 3Z together with the require-
ment that ¢ — 2b € 3Z would yield ¢ € 3Z and so a € 3Z as well since a* +b*=c?;
but this contradicts primitivity. Thus a € 3Z while b and ¢ are not multiples of 3.
Furthermore, we claim that

A®=3(ay, by, c) (4)

where (aq, by, ¢,) is a primitive PT. We know that 9 divides a* = (¢ +b)(c —b). But
3 cannot divide ¢ —b because, together with ¢ —2b € 3Z, this would yield 2¢ and
hence ¢ € 3Z, which is not possible. Thus 9 must divide ¢ + b. Adding to this the fact
that 9 divides 3¢ — 6b we find that 9 divides 4c — 5b. Thus the first two and hence all
three components of the PT in (3) are multiples of 3, and we may write A° as in (4).
Equation (3) shows clearly that any common divisor of a, b, and ¢ must divide the
components of A°. Likewise any common divisor for (ag,b,,c,) would give a
common divisor for A°° = A. Thus (a, b, ¢,) is a primitive PT (but not arithmetic). A
similar argument shows that, conversely, a non-arithmetic primitive PT multiplied by
3 has a primitive companion.

If we begin with any PT (a, b, ¢) then one of ¢ £ 2b, ¢ + 2a is a multiple of 3. To
see this it suffices to work with a primitive PT, for if (a, b, ¢) has this property then so
does (ka, kb, ke) for any positive integer k. Now either @ or b € 3Z. Assuming that
a € 3Z we find that

(c—2b)(c+2b) =c*—4b*>=a* - 3b*

is a multiple of 3 and so 3 divides one of the factors (¢ +2b). The other case is
similar.

Thus given any PT (a, b, ¢) with b > 0, after switching its legs @ and b if necessary
we see that either (a, b, ¢) or (a, —b, ¢) is arithmetic. In the primitive case, just one of
these is arithmetic. If the middle component of this PT has the same algebraic sign as
that of its companion we obtain an acute arithmetic triangle represented in Ficure 1.
If these algebraic signs are opposite, we obtain an obtuse arithmetic triangle as
depicted in Ficure 2, where a right triangle lies inside its companion triangle. Note
that the sum of both middle components is (4¢ —2b)/3, which is a positive even
integer and is the length of the base of the arithmetic triangle. In this way each
primitive PT corresponds to a unique primitive arithmetic triangle.

4. From an Arbitrary PT to an Arithmetic Triangle

Let (a,b,c) be a PT, with b # 0. In how many arithmetic triangles does this PT
“appear” in the sense that a right triangle with sides a,|bl,¢ forms one of the

companion triangles? We know that such an arithmetic triangle must have sides c,
c+d, c+2d where d =(c +2b)/3 or d=(c + 2a)/3. If we write

(a,b,c) =3k(ay, by, cy)
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where (ay, by, ¢,) is primitive then 3/~'k divides ¢ and d (assuming j > 0). Dividing
out 371k from a, b, ¢, and d we may assume that (a, b, ¢) is primitive or has the
form three times a primitive PT, say

(a,b,c) =3(ay,bg.c). (5)

First assume that (a, b, ¢) is primitive. We know that exactly one of the following
four PTs is arithmetic:

(a,b,c), (a,—b,c), (b,a,c), (b,—a,c), (6)

and it appears in a unique arithmetic triangle as described earlier. In the second case
(that of equation (5)) we find that each of the four PTs in (6) is arithmetic. Three of
these will have a primitive companion, and the other will have a companion equal to
nine times a primitive PT, namely the one in (6) which is three times an arithmetic
PT. (If A=3A, where A, is a primitive and arithmetic PT then A° = 3A§ and Aj is
itself three times a primitive PT.) Except for this last case each of the arithmetic
triangles is primitive.

We conclude that every nontrivial PT corresponds to a right triangle that appears in
exactly one or four arithmetic triangles, depending on whether its components are all
relatively prime to 3. For example, the PT (12,5, 13) or any of its multiples relatively
prime to 3 appears in exactly one arithmetic triangle. However, the PT 3(12, 5, 13) (or
any of its multiples) appears in four arithmetic triangles as illustrated in Ficure 4.

45 39 36
36
27 1 15 15 62
42 77
(36, 15,39)[ =9(4,3,5) (36, — 15,39)[ = (36,77,85)
39 39 113
15 17 15
8 28 36 76
36 112
(15,36,39)( = (15, -8,17) (15, —36,30)” = (15,112,113)

FIGURE 4
The four arithmetic triangles for 15, 36, 39

5. An Algebraic Excursion

In [3] we describe how the set of all PTs (with possibly negative middle components)
forms a commutative cancellative semigroup under the operation

(a1, by,¢1)*(ag, by, c) = (a1ay,bico +bycy, biby +cicy). (7

The PT (1,0,1) is the identity element in this semigroup. (Actually, when PTs
corresponding to similar triangles are identified appropriately we obtain a group with
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the inverse of (a, b, ¢) corresponding to (a, —b, ¢).) It can be shown that the set of
arithmetic PTs is closed under *; a computation shows that if (a;, b;, ¢;) is d-arith-

metic for i=1,2, then the PT on the right-hand side in (7) is (3d,dy, —b,b,)-
arithmetic. Also, if (@, b, ¢) is an arithmetic PT then it is easy to check that

(a,b,c)*(a,b,c)’ = (a*/3)(3,4,5). (8)

Suppose that we have an arithmetic triangle that is already a right triangle. Referring
to Ficures 1 and 2 we see that the companion of (a, b, ¢) must be trivial and so have
the form (a, 0, @) = a(1, 0, 1). Thus the left-hand side of (8) reduces to a(a, b, ¢) from
which it follows that

(a.b.c) = (a/3)(3.4,5).

This shows that, up to similarity, the (3,4, 5)-triangle is the only right triangle that is
arithmetic.

6. Parametric Representation

For a primitive PT (a, b, ¢) let (b +¢)/a =n/m where n and m are relatively prime.
It is shown in [3] that

(2nm, n* —m?, n* + m?) if a is even

(nm, (n* = m?)/2,(n*+m?)/2)if a is odd. ©)

| (a,b,c)={

Let us refer to (n, m) as the parametric pair for (a,b,c). If (a, b, c) is d-arithmetic
then computing (¢ — 2b)/3 we find that

{n12 —n?/3if ais even

(1/2)(m* —n?/3) if a is odd.

Now (a, b, ¢)° = (a,(4¢c — 5b) /3, (5¢ — 4b) /3) = 3(a,, by, ¢,). To find the parametric
pair for the primitive PT (a,, b, ¢,) we divide the sum of its final two components by
its first and obtain

(5¢ —4b +4c—5b)/3a=3(c—b)/a=3m/n.

Since n and m are relatively prime and a (= 2nm or nm) is divisible by 3, there are
two cases to consider: m €3Z or else n €3Z. If m&€3Z then (3m,n) is the
parametric pair for (a,, by, ¢,) and we obtain a = 3a, = 6nm or 3nm which contra-
dicts (9). Thus n € 3Z and (mn, n/3) is the parametric pair for (a,, by, ¢,).

In summary, any arithmetic triangle may be reduced to a primitive one whose
three sides are relatively prime. The resulting triangle gives rise to two companion
PTs, one of which is primitive. Using this primitive PT we obtain the parameters n
and m which are relatively prime and with n € 3Z as described above.

Conversely if n and m are two relatively prime positive integers with n € 3Z then
letting

c=n*+m?and d =m*®—n%/3 (10)
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we obtain a triangle with sides ¢, ¢ +d, ¢+ 2d provided that one of the triangle
inequalities is satisfied:

ct+2d<c+(c+d) if d>0,or
c<(c+d)+(c+2d) if d<O0.

Now the first inequality (for d>0) is equivalent to d <¢, which is clear from the
definition of ¢ and d. The second inequality (for d < 0) reduces to —3d < ¢, which is
also clear by definition of ¢ and d. To see that our triangle is arithmetic we use
Heron’s famous area formula [5],

area = 1/s(s —s,) (s —sy) (s —s3) ,
where s, 55, s; measure the sides of the triangle and s is half the perimeter. Thus

area=/s(s—c)(s—c—d)(s—c—2d),

where s = 3(c + d) /2. Expressing this in terms of n and m we obtain
area = 2mn(n? + 3m?) /3,

which is an integer because n € 3Z. Our triangle is primitive unless both n and m are
odd, in which case ¢ and d are even and we obtain a primitive arithmetic triangle
which has been doubled (so we divide its legs by 2). Table 1 gives all primitive
arithmetic triangles for n, m <9. When n <m we obtain obtuse triangles since b <0.
When n > m the triangles are acute if 3m > n and obtuse if 3m < n; this corresponds
to whether the term 4¢ — 5b in the middle component of the companion is positive or
negative respectively.

TABLE 1. The first few primitive arithmetic triangles

m n d c c+d c+2d
1 3 -1 5 4 3
2 3 1 13 14 15
4 3 13 25 38 51
5 3 11 17 28 39
7 3 23 29 52 75
8 3 61 73 134 195
1 6 —-11 37 26 15
5 6 13 61 74 87
7 6 37 85 122 159
1 9 —-13 4] 28 15
2 9 —23 85 62 39
4 9 —11 97 86 75
5 9 -1 53 52 51
7 9 11 65 76 87
8 9 37 145 182 219

Finally, if we write n = 3k in (10) then we obtain the equation
m? —3k%*=d (11)
and Hoppe’s formulas [5, p. 197]
c=9k*+m?, c+d=2(3k*+m?), c+2d=3(k*+m?),
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describing all primitive arithmetic triangles (remembering to take half of ¢ and d
when m and k are both odd).

7. The Allowable Values d

When d =1, Eq. (11) reduces to the Pell equation, whose infinite solution set is well
known and will be described shortly. It is known that Eq. (11) has no solution if
d = —1; the (—1-arithmetic triangles arise from solutions to the equation x* — 3>
= —2. Our work in Section 6 indicates that d-arithmetic triangles correspond to
positive solutions of the equation

x*—3y*=ad, a=1lor2. (11A)

A glance at Table 1 might suggest that for [d| > 1 only certain prime integer values of
d are allowable for a primitive d-arithmetic triangle. This is not the case as the
proposition below shows. The allowable values d arise if and only if d is odd and the
Diophantine equation (11A) has a positive primitive solution (m, k) where m & 3Z (in
which case we obtain the triangle described by (10) with n =3k). Using the
substitution

my=(m+3k)/2and kg=(m+k)/2

when m and k are both odd, this condition is equivalent to the existence of a
primitive solution (m,, k,) to the equation

x*—3y?= +d, (11B)

where m, & 3Z. We will focus on finding the positive solutions to (11B) when |d| > 1.
The following modified form of a result due to Brahmagupta shows how allowable
values multiply.

ProPOSITION (Multiplicative Property). If d, and d, are relatively prime integers
and both allowable values for primitive arithmetic triangles, then d,d, is also
allowable.

Proof. Brahmagupta’s rule of composition [1, p. 320] tells us that if m? — 3kZ = +d,,
for i = 1,2, then (11B) is satisfied for d = d,d, and for m and k defined by

m+V3k= (ml + \/gkl)(m2 + \/§k2).
Comparing both sides of this equation we see that
m=mym, + 3kk,, k=mky,+myk,. (12)

The first equation in (12) shows that m & 3Z if m; & 3Z. If d, and d, are relatively
prime then (m, k) is primitive: the equations in (12) yield

kmy —kym= tk,dy,, mk—km= tky,d,.
Keeping in mind that m,; & 3Z we see that any prime ¢ dividing both k and m will

divide the right hand sides of these equations and lead to a contradiction. This
completes the proof.

Suppose that d is allowable so that there exists a primitive solution (m, k) to (11B)
with m & 3Z. Then k is relatively prime to d and so to each odd prime factor p of d.
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Note that p # 3. Let d = rp and write (11B) as
m? —3k% = +rp. (13)

Now k has a multiplicative inverse modulo p so there exists an integer t such that
m =kt (mod p). Equation (13) then shows that

?=3 (mod p). (14)

But it is known that this is possible if and only if p = £1 (mod 12) (see [1, p. 131]).
In particular, if d is allowable then d = +1 (mod 12). The converse is not true; for
example, there are no 49-arithmetic triangles. However, a partial converse holds,
namely for primes: If p is a prime such that p = +1 (mod 12) then (11B) with d =p
has a primitive solution (so that p is allowable). For a nice proof of this result see
[6, p. 211].

Let p be such a prime and let us show that p' is allowable for any positive integer
i. Brahmagupta’s rule of composition shows that (11B) is solvable when d=p'.
Clearly the first component of a solution can not be a multiple of 3 since p > 3. But
how do we know that the solution is primitive? If (m, k) is a primitive solution to
(11B) with m & 3Z then the composite solution (m* + 3k*,2mk) to x* — 3y =d?* is
primitive since a prime divisor (necessarily odd) of both m® + 3k® and 2mk would
divide d, m, and k, contradicting the primitivity of (m, k). In particular p' is
allowable when i =2/, If i does not have this form let j be an integer such that
i <2J. Let (m, k) be a primitive solution of x? —3y*=p and let

m, +k,V3 = (m1 +k1\/§)w.

Brahmagupta’s rule of composition shows that (m,,, k,,) is a solution to

w? w
x?—3y?=p“.
Composing solutions for w =i and w = 2/ — i we see that
my; =m;mgi_, +3k;koi_;, ko=kmgi_; +mky_,.

These equations show that any common divisor greater than 1 of m,; and k;
contradicts the primitivity of (m,;, ky;). We conclude that p' is allowable.

We shall describe how to find all primitive d-arithmetic triangles for a given
allowable value d. The multiplicative property shows that it suffices to work with the
case in which d is a prime power. In order to avoid having to treat the two cases of
(11B) separately we describe a d-arithmetic triangle more symmetrically as shown in
Ficure 5. Heron’s formula for the area becomes

3hg=v3g(g—d)g(g+d)

which reduces to
g?—3h*=d>, (15)

an equation similar to (11). Note that (11B) (for one of the choices of algebraic sign)
has a primitive solution (m, k) with m & 3Z if and only if (15) has a primitive solution
since either occurs if and only if there exists a primitive d-arithmetic triangle. We
summarize what has been established so far.
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H
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FIGURE 5
A d-arithmetic triangle

THEOREM (Allowable d-values). The following statements are equivalent for an odd
integer d.

(i) There exist primitive d-arithmetic triangles.
(i) d = £ 1 oris a product of primes p,= +1 (mod 12).
(iii) x* — 3y® = d* has primitive (integer) solutions.
(v) x> —3y*= +d, x&3Z has primitive (integer) solutions for one choice of
algebraic sign.

We seek all primitive solutions (g, k) to (15) for relatively prime integers g and h.
References [1], [2], and [6] are good sources for this kind of problem. When d = 1 it is
known that the positive solutions (g;, h;) of (15) are given by the sequence

(gh)=(2,1),(7,4),(26,15),..., (16)

where g;., =4g;.; —g; and h;,, =4h;; — h;. A neat proof of this fact is given in
[4]. This describes all triangles that are 1-arithmetic. If the least positive solution of
(15) with |d|> 1 is obtained, then it may be combined using Brahmagupta’s rule of
composition with the sequence in (16) to produce an infinite number of primitive
d-arithmetic triéngles. However, this does not produce all of them.

In order to find all solutions to (15) we assume that d = p* where p is an allowable
prime. Reasoning as before, if (g, h) is a primitive solution to (15), then h is relatively
prime to p (and so is invertible modulo p). Thus we can find an integer ¢ such that
g=ht (mod p), and we may take —p/2 <t <p/2. Equation (15) then shows that
t>=3 (mod p). This congruence has exactly two solutions +¢ between —p /2 and
p/2 (see [1, p. 72]). Let C, be the set of all positive primitive solutions (g, h) of (15)
for a given value t. It can be shown that any two members of C, are related by a
(Brahmagupta) composition with a member of the sequence (16) (see [1, p. 345)).
Thus it suffices to find the least positive solutions in each of the two classes C_,
and C,.

Let us find all 13-arithmetic triangles. By inspection we find the first two positive
solutions of the equation g2 — 3h* =13 to be

(G, H,) = (14,3) and (G,, H,) = (19,8),
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and these are both primitive. Since ¢* = 3 (mod 13) we must have ¢t = +4. The least
positive members of the classes C_, and C, are (14,3) and (19, 8) respectively.
Composing these with the members of sequence (16) using Brahmagupta’s rule of
composition we obtain the values G; and H;, describing all primitive 13-arithmetic
triangles. The first few of these are given in Table 2.

TABLE 2. The first few 13-arithmetic triangles

G, H, 2G,—d 2¢; 2G,+d
c_, 14 3 15 28 41
37 20 61 74 87
134 77 955 268 281
499 288 985 998 1011
C, 19 8 25 38 51
62 35 111 124 137
299 132 445 458 471
854 493 1695 1708 1721
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A Study in Step Size

TEMPLE H. FAY

University of Southern Mississippi
Hattiesburg, MS 39406-5045

While experimenting with giving polar plots some “texture,” I discovered an interest-
ing effect that might intrigue students: high sensitivity to step size. The base equation
is that used to generate the butterfly curve (see [1], for example)

r(6) =e“(® —2cos(46),

but the technique can be applied, and the same effect observed, using almost any
polar equation.

The “texture” is obtained by multiplying this base curve by a rapidly varying
sinusoidal factor, in this case by sin(A0), where A = 99999999. The fourth power was
chosen to keep the factor non-negative and small. The value of A was chosen
arbitrarily; any large number would produce the same effect.

Data sets, consisting of points (x,, y,) where

p(0) = (=P —2cos(40))sin*(A6)
and

x, =p(6,)sin(6,)

Y = p(6,)cos(6,),

were produced by setting 6, =0, and 6, = 6, _, +h where h denotes the step size,
for 0 < 6 < 27. (Reversing the sine and cosine from their “usual” positions rotates the
butterfly 90° into the upright position shown.) These data sets contain roughly 11,500
to 42,000 points.

The plots shown on the cover of this issue were produced with step sizes as follows:

h, =0.00015 h, = 0.0003
hy=0.0005  h, =0.00055

The plots in the following Figure used these step sizes:

hs = 0.0007 hg =0.000169

h,=0.000711 hg =0.00071

116
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FIGURE
Four butterfly curves

Watching the dynamics of the plotting of the sequentially-generated points (x,,, y,,)
is interesting in and of itself. Students might enjoy experimenting with different
equations, values of A, and step sizes.
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Loosest Circle Coverings
of an Equilateral Triangle

HANS MELISSEN

Philips Research Laboratories

Prof. Holstlaan 4, 5656 AA Eindhoven
The Netherlands

1. Introduction The problem of completely covering a circular space painted on a
cloth by placing over it, one at a time, five smaller but equal circular tin discs used to
be a popular game at English fairs around the turn of the century; see [4, 12]. Its
difficulty lies in the restriction that no disc may be moved once it is put down. The
size of the discs is of course designed to prevent the unwary player from finding a
correct covering without a good deal of trial-and-error. An interesting characteristic
from a mathematical point of view is the smallest radius of the tin discs for which the
puzzle is solvable. The corresponding solution is the loosest circle covering of the
circular disc. Neville showed in 1915 [11] that a covering can be found if the radius of
the smaller discs exceeds 0.609382864 . .. times that of the large circle. His configura-
tion is shown in Ficure 1. He actually used this example to illustrate a new method for
numerically solving systems of nonlinear equations. Unfortunately, he reported the
incorrect value of 0.6094183. In 1983 Kiroly Bezdek proved the optimality of
Neville’s configuration (see [2, 3]). Here, again, an incorrect numerical value of

FIGURE 1
Neville’s loosest covering of a circle with five circles.
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1/1.640... was computed. In his dissertation [1], Bedzek treated the covering of a
circle by six circles. The proof is complicated. The cases of two, three, four, and seven
circles are easy. The best coverings with eight, nine, ten, and eleven discs were treated
by Krotoszyfiski [6] in 1993, but his proofs are incomplete. Correct proofs for nine and
ten discs were found recently by G. Fejes Téth. Melissen and Schuur have improved
Krotoszyfiski’s covering with eleven circles. Further loose coverings with up to 20
discs were given by Zahn [14]. Loose circle coverings of a square with up to 10 circles
were given by Tarnai and Gészpar in 1995 [13]. Their conjectures for n =6 and 8
were improved in [10]. Recently, Heppes and Melissen [5] found the optimal
coverings of a general rectangle with 2, 3, 4, 5, and 7 circles.

In analogy to covering a circle and a square with circles and packing an equilateral
triangle with circles ([7, 8, 9]), we will consider the related problem of covering an
equilateral triangle with congruent circular discs. We shall determine the loosest
covering for up to six discs. Finally, we will consider some coverings of the triangle
with discs that need not be congruent.

The smallest common radius of n congruent closed circular discs that can cover a
equilateral triangle of unit edge length (including its interior) will be denoted by ,.

2. One disc The unique smallest circle that covers the vertices of the triangle is
obviously the circumscribed circle, with radius 7, = V3 /3 (Ficure 2a).

@) ®)
FIGURE 2
Loosest covering of an equilateral triangle with one and two congruent circular
discs. The dotted Reuleaux triangle in (b) bounds the possible position of the
center of the second disc.

3. Two discs If the vertices of the triangle are covered by two discs, one of the
discs must cover two vertices, so T, > 1/2. Now suppose that the radius of the two
discs is equal to 1/2. The center of one disc must then lie halfway between two
vertices. The remaining region can easily be covered by the second disc. Its center can
lie anywhere in the dotted Reuleaux triangle of constant width 1/2 indicated in Ficure
2b. This shows that 7, = 1/2 and that the loosest covering is not unique.

4. Three discs Consider the three vertices of the triangle together with its center.
Two of these four points must be covered by one of the discs, so 7, > V3 /6. If we
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have three discs of radius V3 /6, then the position of the one that covers two of the
four points (the center and a vertex) is fixed. As the center of the triangle lies on the
boundary of this disc, it must be covered by yet another disc. The two remaining discs
must cover the two uncovered vertices and the center of the triangle, so one of the
discs must cover two of these points and is also fixed. The last disc fits in exactly one
position to cover the rest of the triangle. Consequently, 7, =3 /6, and the corre-
sponding optimal covering is unique, see Ficure 3a.

P4 Ps Pe
(a) (b)
FIGURE 3
Loosest covering of an equilateral triangle with three congruent circular discs (a).

5. Four discs The solution for four discs is less trivial. The discs must cover the
three vertices and the three centers of the edges of the triangle in Ficure 3b. This
means that two of these six points must be covered by the same disc, so 7, > 1/4.
Unfortunately, this bound is not sharp; the triangle cannot be covered by four discs of
radius 1/4. The best possible value for the radius turns out to be 7, =2~ V3 =
0.267949. .. .

To show this, take four discs Dy, ..., D, of radius 2 — V3. No single disc can cover
two vertices of the triangle, so each of the three vertices is covered by its own disc
(D,, Dy, D,). The three discs may be moved such that their centers are inside the
triangle and the covered vertex is on the boundary of the covering disc, without
destroying the covered property. As the radius of the discs is slightly smaller than
V3 /6, the radius of the incircle of the triangle, the fourth disc D, cannot have points
in common with all three edges of the triangle. This means that at least one of the
edges must be covered by two discs (D, D,), that also cover the two corresponding
vertices (see Ficure 4a). The distance between g, and ¢, always exceeds 2(2 — V3),
so ¢, and g, cannot be covered by D, simultaneously. Therefore, two of the edges
must be covered completely by D,, Dy, and Dj. This is possible in exactly one way
(Ficure 4b). Finally, there is one possible position in which D, covers the remainder
of the triangle. This configuration is unique up to rotations, so it must be optimal.

6. Five discs Two of the six points p,, ..., ps in Ficure 3b must be covered by the
same disc, which shows that 75 > 1/4. The triangle can actually be covered by five
discs of radius 1/4 (see Ficure 5a), so 75 =1/4. The corresponding solutions are
shown in Ficure 5a. Four discs are fixed. The center of the fifth disk can move inside
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(@) (b)

FIGURE 4
Optimal covering with four congruent circles (b).

(a) (b)

FIGURE 5
Loosest coverings of an equilateral triangle with five and six congruent circles.
The dotted Reuleaux triangle in a) encloses the feasible region for the center of
the fifth disc.

a small Reuleaux triangle. That all solutions are of this form can be seen by checking a
number of possible cases. Two of the six points p,,..., p; must be covered by one
disc. Apart from rotations and reflections we can assume that either p, and p, are in
one disc, or p, and p,. In the first case all points (except possibly p,), and in the
second case all points must be covered by the remaining four discs, so in both cases
there must be another disc that covers two points. We leave the completion of these
arguments to the reader.

7. Six discs  We will show that 7, = V3 /9 and that the obvious loosest covering in
Ficure 5b is unique. Suppose that we have a covering with discs of radius r < 7.
Again, there are distinct discs D,, D,, and D, that cover each of the vertices. The
inequality 47 < 1 shows that no two discs can cover an edge completely and also that
two centers of the edges cannot be covered by one disc. Therefore, apart from D,
D,, and D;, there must be a unique disc (D,, D;, Dg) associated with each edge. It is
easy to see that D,, Dy, and Dy must have some point p in common.
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To find a lower bound for  we will now determine the maximum length of the
boundary of the triangle that can be covered by these six discs. As before, D, D,,
and Dj can be translated until each has a vertex on its boundary. The length of the
boundary of the triangle that is covered by such a disc is equal to

2r

cos ¢+cos(% - )] =2\/§rcos(¢— g),

where ¢ is the angle between the line through the vertex and the center of the disc,
and one of the edges of the triangle. This length is maximal for ¢ = 7/6, so 6V3r is
an upper bound for the length covered by D,, D,, and D;. We must also determine
the maximum length that can be covered by D,, Dy, and D;. First, each disc is
pushed outward, perpendicular to the edge it intersects, until either p is on the
boundary of the disc, or the maximum length (27) is covered. The total length
covered by D,, D;, and Dy is therefore at most

(k).

where the h; denote the distances from p to each of the edges and

f(h) =2V2rh —h* if r<h<2r,

=2rif h<r.

As f is concave we have that
3 13
£ Ay sof{§ )
i=1 i=1
By computing the area of the triangle in two different ways it is easy to see that

hl+h2+h3=%\/§,

so the maximum length of the boundary covered by D,, Ds, and Dy is at most

V 123 r — 3. The total circumference of the triangle must be covered, so

6v3r+112V/3r—3 > 3.

This shows that r > 7. If 7= 7, all maxima must be assumed to cover the triangle.
The only possible covering is shown in Ficure 5b.

8. Incongruent discs In this last section we will sketch some further questions and
results. So far we have used congruent discs to cover the triangle. Can these coverings
be improved by relaxing the condition that the discs need to be of equal size? By
improving we mean: Can the triangle be covered by circular discs with a smaller total
area? This question would be completely uninteresting for circle coverings of a circle,
but the solutions for the triangle are nontrivial. For two discs the answer seems
simple. A solution that naturally presents itself is to use the fixed disc in Ficure 2b and
to cover the small triangle with a smaller disc. In this way the total area of the
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covering discs can be reduced from /2 =1.570796... to 7/3 =1.047195....
Surprisingly, this is by no means the best solution! To find the optimal covering we
note that one of the discs must cover two vertices, and therefore its radius R must be
equal to at least 1 /2. It covers the maximum area of the triangle if the two vertices lie
on its boundary. The remaining triangular region needs a disc of radius

r= %\E - %\/432— 1
to cover it. The total area of the two discs
7(232— %\/37\/432 -1 - é)

is maximal for R =39 /12, r =3 /12. The total area of the discs in Ficure 6a is
then equal to 77/24 = 0.916297 ... .

N T———

(2) (b) ©)
FIGURE 6
Loosest covering of an equilateral triangle with two and four circles. The
covering with three discs is suboptimal.

Similarly, one might surmise that the covering with three discs can be improved by
a configuration like Ficure 6b. For the best configuration of this form the radius of the
largest disc is equal to

1/3

2
R )=0‘466255... where s=%(4+2\/58—) :

V3 V3 2 1
=77 ﬁ(s "33
The radius of the smaller discs is equal to 0.134921.... This covering is only
suboptimal. The total area of the discs is 0.797341.. ., compared to /4 = 0.785398.. ..
for the original covering.

To show that the covering in Ficure 3a is also the best solution here, suppose that
we have a covering with three discs of radius r,, 7y, and r;. As we already have a
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covering with an area of 7/4, each radius must be smaller than 1/2, so each of the
vertices must be covered by its own disc. We can assume that this vertex lies on the
boundary of the disc. The length of the boundary of the triangle covered by such a

disc is at most 2\/§rj ifrjs\/g/4 and2\/§rj+ ‘/4\/§rj—3 ifrj21/§/4. Only one

of the discs can have a radius that is larger than V3 /4. First, consider the case that all
radii are smaller than V3 /4. The maximum length covered, 2V3 (r, + r, + ), under
the restriction that r7 + 3 +r3 < 1/4 is then assumed for r, =r, =1, = \/§3 /4. This
is the covering shown in Ficure 3a. In the situation that one of the discs has a radius

that exceeds V3 /4, we must find the maximum of 2v3 (| + 7, + r3) + \/41/51*1 -3
under the restriction that ri+rJ +rj <1/4. This maximum is assumed for r, =
0.459920... and r, =r; = 0.138695... and has the value 2.985892... . As this value
is smaller than 3, the circumference of the triangle cannot be covered completely, so
Ficure 3a remains the best solution.

By using similar arguments it can be seen that the loosest covering with four

circular discs is shown in Ficure 6¢. The radius of the large disc is equal to Vol /12,
and the smaller discs have a radius of V3 /12. This covering improves the area of the
discs from 4(7 — 43 )7 = 0.902224 ... for a covering with congruent discs to 5m/24
= (0.654498... .
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The Smallest Equilateral Cover
for Triangles of Perimeter Two

JOHN E. WETZEL

University of Illinois
Urbana, IL 61801

In an obscure but interesting pamphlet [7], Josiah Smith' announced his belief that
every triangle of perimeter two can be covered by an equilateral triangle of side one.
“Experiments suggest,” he wrote, “that every triangle with perimeter two can be
placed in an equilateral triangle of side one, although I cannot establish this fact in
fullsome rigour. ...No smaller equilateral triangle has this property, because flat
isosceles triangles of base 1 — § and equal sides 3 + 3 must fit.”

In this note we solve Smith’s problem by determining the side of the smallest
equilateral triangle (i.e., closed equilateral-triangular region) that can cover every
triangle of perimeter two, and we discover that Smith’s intuition was not correct: a
side longer than one is required. We show that the smallest equilateral triangle T,
that can cover every triangle with perimeter two has side s, == 2 /m,,, where m, is the
global minimum of the trigonometric function

f(x):=\/§(l+sin§)~sec(167——x) (1)

on the interval [0,7] (see Ficure 1). A little numerical work?® (the details of which we
omit) shows that the global minimum value m, = 1.99431 occurs at the (unique) point
xo = 0.074733, approximately 4.28186° so the side s, of T is about s, =~ 1.002851.

220 77

2.15

2.10

2.05

2.00

1.95 R P | x

0 rz @& = T 5 T
36 18 12 9 36 6
FIGURE 1

f(x) =31 + sin x/2)sec(m/6 — x) for 0 <x < /6.

We begin by proving that an equilateral triangle of side s contains a relatively large
triangle of each possible shape; then scaling shows that T, can accommodate every

lalso the author of a seminal book [6] on arrangements of hyperplanes. (See Zaslavsky [11].)

®I want to express my gratitude to Steven Knox and Paul McCreary for (independently) coaxing these
numerical results out of Mathematica.
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triangle of perimeter two (Corollary 2). In Theorem 3 we show that no smaller
equilateral triangle has this property. The note concludes with a few remarks about
some closely related problems.

Write T(s) for the equilateral triangle of side s (so that T = T(s,)), and let p(a)
be the perimeter of triangle A.

THEOREM 1. For any given triangle A, the equilateral triangle T(s) with side s
contains a triangle A* similar to A with perimeter p(a*) = mys.

Proof. We build such a triangle A* for each given triangle A. Suppose first that
some two angles of A are not larger than 60°, and arrange the notation so that
£Q <60° and £ R < 60°. Then there is a point X in T(s) so that a* := XBC ~ PQR
= A. Then p(a*) =p(XBC) = 2s > mys.

In the contrary case there are two vertices at which the angles are both larger than
60°. Arrange the notation so that £ Q > 60° and £ R > 60°. The argument depends on
the size of the third angle £ P.

Suppose that £Q > 60°, £ R > 60°, and £ P > 30°, so that both £Q and Z R are
acute. Let M be the midpoint of BC, and take points Y on BM and Z on MC so
that £ AYM = £Q and £ AZM = £ R; then a*:=AYZ~PQR= a. To show that
p(a*®) > mys we argue geometrically. Let Y, and Z, be the points on BC so that M
is the midpoint of the segment Y,Z, and Y,Z, = YZ (see Ficure 2). Then £Y, AZ, >
LYAZ= L P=>30° and AY, +AZ, < AY + AZ. (It is an elementary exercise to show
that if a point E is not on a line ! and points F and G on [ are d apart, then £ FEG
is maximized and EF + EG is minimized when F and G are symmetrically located
about the foot of the perpendicular from E to l.) Consequently AY,Z, surrounds an
isosceles triangle AY,Z, with apex angle 30° at A and altitude (V3 /2)s, whose
perimeter is V3s(sec15° + tan 15°) > 2.25s. Hence p(a*)=p(AYZ)>p(AY,Z)) >
p(AY,Z,) > 2.255 > mys.

Finally, suppose that 60° < 2 Q < Z R, and £ P < 30°. Then there are points Y on
AB and Z on BC so that a*:=AYZ~PQR= A (see Ficure 3). To establish that
p(a*®) = m,s we again argue geometrically. Since AY > AZ there is a point S on AY
with AS = AZ. Then the isosceles triangle A, := ASZ has apex angle £ P < 30°% and,
writing £ P = x (and switching to radians), we see that AZ = (V3 /2)s-sec(/6 — x).
Since SZ = 2 AZ sin x/2, it follows that p(a,) =s-f(x) = m,s, where f is defined by
(1). Consequently p(a*) = p(a,) = mys.

FIGURE 2 FIGURE 3
Case 2a Case 2b.
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Scaling shows that the equilateral triangle T, can cover every triangle of perimeter
two:

COROLLARY 2. If s >s,=2/m,, then the equilateral triangle T =T(s) can cover
every triangle of perimeter two. In particular, T, can cover every such triangle.

Proof. If s >s,, then according to Theorem 1, for every triangle A of perimeter
two there is a triangle A* in T(s) similar to A whose perimeter is at least
mys =my(2/m,) = 2. So the triangle A, which certainly fits in the larger triangle
a*, surely fits in T(s).

To see that no smaller equilateral triangle has this property, we examine an
isosceles triangle that gives the equality in the inequality of Theorem 1 and show that
it fits in no smaller equilateral triangle.

THEOREM 3. If an equilateral triangle T(s) can cover every triangle of perimeter
two, then s > s,.

Proof. Let a, be the isosceles triangle of perimeter two whose apex angle is the
angle x,. (See the shaded triangle in Ficures 4 and 5.) The two equal sides of A, have
lengths

-1
= (1 +sin%) ~ 0.96399,

and the base has length 2[-sin x,/2 =0.072025. Note that the altitude h,=
l-cos xy/2 of &, exceeds 0.96.

FIGURE 5 Y
A non-minimal configuration. The minimal configuratiou

A FIGURE 4 B

Let t, be the side of the smallest equilateral triangle that can accommodate a,.
(The existence of such a triangle is an elementary consequence of compactness.)
Evidently t, < s, =2/m,. We investigate how T(¢,) might fit around A,,.

First of all, it is clear that all three vertices of A, must lie on the sides of T(t,),
because otherwise a suitable small motion would move A entirely inside, contrary to
the minimality of ¢,.
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Suppose that one side of T(#,) contains the base of A,. Then the minimality
requires that the apex of A, be the opposite vertex of T(¢,), and we can arrange the
notation so that T(¢,) = ABC and &, = AYZ, with Y and Z on BC located symmetri-
cally about the midpoint M of BC (see Ficure 4). Then (V3 /2)t, = hy > 0.96, so that
t, > 1.1, contrary to t, <s,. So no side of T(¢,) contains the base of A,.

Suppose next that one side of T(t,) contains one of the two equal sides of a,.
Then the minimality requires that the apex of A, be at a vertex of T(¢,), and we can
arrange the notation so that T(¢,) = ABC and a,=AYZ, with Y on AB and Z on
BC (see Ficure 5, cf. Ficure 3). Then 2 = p(a,) = ¢, f(x,) = tym,, so that in this case
to=2/my=s,. Our claim is that this is the minimal configuration.

Suppose finally that each vertex of A, lies on a different side of an equilateral
triangle T(¢) = DEF, and arrange the notation so that the apex of A, lies on DF
nearer D than F and the base vertices lie on DE and EF (as in Ficure 6, which also
shows triangle T'(¢,) = ABC in the position described in the previous paragraph, with
the base vertices of A, on AB and BC and the apex of A, at A). Now an elegant
geometric argument of Ross Honsberger (see p. 36 of [4]) shows that ¢ > ¢,. Indeed,
in the notation of Ficure 6, where P and Q are the centers of the two 240° arcs
outward on the two equal sides of A in which the 60° angles of T(¢) and T(¢,) at A,
C, D, and F are inscribed, PU L QA, QV L AD, and PV L QV, and W= QA NPV,
we see that t =2VP > 2WP > 2UP =t,. So no equilateral triangle T having each
vertex of A, on a different side of T can be minimal®.

FIGURE 6
Comparison of two configurations.

So, as claimed, the minimal configuration is the one pictured in Ficuze 5. It follows
that an equilateral triangle T(s) of side s that can accommodate every triangle of
perimeter two, which must, in particular, accommodate A, must have side s > ¢, = s.

Combining the assertions of Corollary 2 and Theorem 3 gives us the solution to
Smith’s problem:

THEOREM 4. The equilateral triangle Ty = T(s,) is the smallest equilateral triangle
that can accommodate every triangle of perimeter 2.

3In fact, this possibility is already ruled out by a recent nice result of K. A. Post [3], who proved that if a
triangle ABC contains a triangle PQR, then it also contains a triangle congruent to PQR having two of its
vertices on the same side of ABC.
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It is worth noting that since the extremal triangles are isosceles, one need not
minimize over all similarity classes—the isosceles triangles are enough. So we find:

THEOREM 5. The equilateral triangle T, = T(s,) is the smallest equilateral triangle
that can cover every isosceles triangle of perimeter 2.

It would be very interesting to solve Smith’s problem more generally for arbitrary
triangular covers: find the size of the smallest triangle similar to a given triangle that
can accommodate every triangle of perimeter two. This is likely to be difficult.

Smith’s problem can also be generalized in a different direction. For each n > 2 let
s, be the side of the smallest equilateral triangle that can accommodate every closed
polygonal path of n segments and length two (so that s, =1, 55 =2/m, = 1.00285,
etc.). The precise determination of s, for n > 4 appears very difficult, but it is easy to
see that the sequence (s,) increases to the limit 2//3 /= 1.10266. Since any closed
curve of length two surely lies in the disk of radius one whose center is any point of
the curve and consequently in an equilateral triangle of side 23, the sequence (s,) is
surely bounded. (Indeed, every closed curve of length two lies in some disk of
diameter one (see Wetzel [10], Chakerian and Klamkin [1]) and consequently in an

equilateral triangle of side V3 .)
THEOREM 6. For each n=2,3,4,...,s,,, =s,, and lim(s,) = 2V3 /.

Proof. The bounded sequence (s,) is clearly increasing (because each n-segment
closed polygonal path of length two becomes an (n + 1)-segment polygonal path of
length two when a new vertex is inserted into any edge), and consequently it
converges, say to s,. Writing r, for the regular n-gon of perimeter two with center at
a point P, and writing ¢ for the circle of circumference two having the same center,
we recall that r, = ¢ in the sense of the Hausdorff metric. Since the side of the
equilateral triangle whose inscribed circle has circumference two is 2V3 /, it follows
that s, > 2V3 /7. On the other hand, it is a consequence of an inequality proved by
Eggleston [3] that an arbitrary triangle can accommodate every closed curve whose
length is the same as the circumference of its inscribed circle (see Wetzel [8], [9];
Chakerian and Klamkin [1]). So s, < V3 /.

Smith [7] makes unsupported assertions about a variety of other covering problems.
He declares, for example, that the smallest equilateral triangle that can accommodate
every triangle of diameter 1 has side (2V3 /3)cos 10° = 1.13716, and he asserts that
the smallest disk that can cover every triangle of perimeter two has radius 23 /9 =
0.38490. We leave the investigation of these two (correct) claims as exercises for the
reader.

There are many similar covering problems in the literature, most of them unsolved
and seemingly beyond reach. For a glimpse of this literature, see the wonderful survey
put together by Croft, Falconer, and Guy [2].

Acknowledgment. It is a pleasure to acknowledge insightful suggestions by the editor and referees.
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Proof Without Words:
The Sum of the Squares of Consecutive Triangular
Numbers Is Triangular

t,=1+2+ - +n = t2_ | +t2=t;

n n—1

NoTE: This is a companion result to the more familiar t,_, +t, = n*:

—Rocer B. NELSEN
Lewis & Crark COLLEGE
PortLanD, OR 97219
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Fibonacci With a Golden Ring

KUNG-WEI YANG

Western Michigan University
Kalamazoo, MI 49008

1. Introduction A popular application of linear algebra is to use the matrix

A=(% Y (or [} L)) to derive an explicit formula for the Fibonacci numbers
11 10 Xp

(Fy=0,F,=1,1,2,3,5,813,...,F,,, =F,,; + F,,...) in terms of the golden ratio
=010+ \/g)/2 and its conjugate d=>1- \/g)/2 (e.g., [4, p. 252]). We would like to
show that if you play with the matrix A a little, adding, subtracting, multiplying, and
exponentiating, you will soon find yourself in the higher domain Z[ A] and rewarded
with a spectacular view of much of the beautiful Fibonacci landscape, instead of just
one formula. From there, you will be able to see a unified proof of a number of

familiar Fibonacci identities, such as

Fgcd( m,n) = ng( Fm > Fn) >

and

F,F

m-n+p -

F,.,F,=(-1)"(F,_, F,—F,F,_,),

m+p - n m—=p-n
and some not-so-familiar ones, like

F,+F, . +F, ., +— +F

m m+r m+2r m+nr
1 r
=T, NT Fm_Fm n r+ -1 Fm nr_Fm—r .
Ty L U Bt (S (B )]

You will also find that, under an isomorphism between the ring Z[ ¢] and the ring of
generalized Fibonacci sequences (see Section 3), the Fibonacci sequence and the
Lucas sequence (L,=2,L,=1,3,4,7,11,18,29,...) correspond to 1 and V5, re-
spectively.

2. Golden matrix ring " The simplest ring generated by the matrix A is Z[ A, the
ring of polynomials in A with integer coefficients. In Z[ A], A2 — A — I =0 because
the characteristic polynomial of A is det(XI —A)=X?— X —1 (which is also the
characteristic polynomial of the Fibonacci recurrence relation F,,, =F,. , +F).
Since ¢ is the positive root of the polynomial ¢>— ¢ —1=0, Z[ A] and Z[¢] are
isomorphic under the eigenvalue map &: Z[ A] — Z[ ¢] determined by &(A) = ¢ and
&g =1.

The interesting ring Z[¢] is fully discussed in the classic An Introduction to the
Theory of Numbers, by Hardy and Wright [2]. We know:

i. the ring Z[¢] is a Euclidean domain;
ii. the units of Z[¢] are the numbers +¢p*" (n=0,1,2,...);
iii. the primes of Z[¢] are (i) V5, (i) the rational primes 5n + 2, (iii) the factors
(a + b@) of rational primes 5n + 1 (and the associates of these numbers).
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By the isomorphism &, Z[ A] shares the same properties. In particular, the units of
Z[ A] are the matrices +A*" (n=0,1,2,...), and the prime corresponding to V5 is
—I+2A. It is natural to call Z[ A] the golden matrix ring.

When there is no danger of confusion, we will identify al with a, omitting the

| (o 1) .. i_ _a-1_(1 -1
syrilbol I. The conjugate of A= (1 1) is A=—-A (_ 1 o ) Therefore,

AA= —1, and A+A=1. The conjugate of a +bA is a +DbA. Conjugation is an
automorphism. Mimicking the terminology for the complex numbers, we will call b
the golden part of (a +bA), and denote it by £(a +bA)=>b. It is obvious that
Z: Z[ A] > Z is a linear map. The norm of a +bA is defined to be N(a +bA) =
(a + bAXa + bA) = a®> + ab — b%. Note that N(a + bA) = det(al + bA) =

det(z . i b)’ and so the norm map is multiplicative in the sense that

N((a+bA)(a' +b'A)) =N(a+DbA)N(a' +b'A).

3. The ring of generalized Fibonacci sequences Consider the set F of all
integer sequences {Gr_o satisfying the recurrence relation G, ., =G,,, + G,, re-
gardless of the initial conditions. A. F. Horadam [3] calls such sequences generalized
Fibonacci sequences. Observe that F is an abelian group under the addition {G,} +
{H,} ={G, + H,}. Define the matrix map .#: F — Z[ A] by

H({G,}) = (G, — Gy) I+ Gy A.

A is clearly a group homomorphism. Furthermore, by a simple induction (using
A?=A+1), we have

G

n

L+ G, A=A%({G,)}). (1)
Consequently,
G, =7 (A ({G.}))- (2)
Define the sequence map %: Z[ A] - F by
F(a+bA)={Z(A"(a+DA))}.

Then % is also a group homomorphism, A #Z(G,}) ={G,}, and .#(F(a + bA)) =
(a +bA). Thus, # and % form an inverse pair of group isomorphisms. We may
now transfer the multiplicative structure of Z[ A] to F via .# and #. We define
{GHH,} =A#{GD.#({H,)})) and denote it by {(GH),}. With this multiplication, F
becomes a ring, and the maps #: F — Z[ A] and % Z[ A] - F are isomorphisms of
rings, and all previously defined notions become operational in F. Here are two
familiar sequences:

{F}=(1) ={2(A")}
is the Fibonacci sequence, and
{L,} =(—-1+2A)

is the Lucas sequence. Thus, under the isomorphism & o .#: F — Z[ ¢], the Fibonacci
sequence corresponds to 1, and the Lucas sequence to V5 . The following special case
of (1) is well-known:

(Fn—1+FnA)=An' (3)
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4. Extensions and applications The isomorphisms just discussed lead easily to
various properties of the Fibonacci sequence.

Negative Indices. Because N(A) = det (1) i ) = —1, A is a unit. Thus identity (1)

and hence also (2) and (3) are easily seen to hold for negative exponents and indices
(...—3,2,-1,1,F,=0,F, =1,1,2,3,...). Indeed, for all n,

F—Il = (_]‘)'H.an’

because
F_, =3(A_") =,?(Fn_1 +FnA)_1 =‘?((Fn—1 +F,,A—)/N(A")) _ (_l)n_HFn-

Divisors. By (3), we have that
n ‘
Am+pn =Am(Fp_1 + Fp A)n _ Z (?)(Fp)i(Fp_l)n—l Am_H )
i=0

Applying (2), we get
Gup= X (1) (B) ()™ G
i=0

Letting {G,} be the Fibonacci sequence {F,}, setting m = 0, and noting that F, =0,
we obtain

R, -5 £ ()85 E)

From this identity we immediately deduce:

If d divides n, then F, divides F,.

If d = ged(m, n), then there exist integers x and y such that mx + ny = d. Express-
ing A™*nY =A% in the form

(me—l + SFmA)(Fny—l +TFnA) = (Fd—l +F(lA)’

where S and T are integers, and comparing the golden parts, we see that F; is a
linear combination of F,, and F,. This proves that

Fgcd( m, n) = ng( Fm > Fn) .

Further Identities. Many Fibonacci identities can be given routine, uniform proofs
using (2). For instance, the identity
F,

n

-1 +Fn+1 =Ln
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follows from
E,_ +Fy,,=%( Arl +A"+1) =.?(A"(A_1 +A)) =Z(A"(-1+2A))=L,.
Similarly the identity
L, L, =5F,
follows from
Loy + L, =F(A" (—1+2A) + A" (—1+2A4))
—Z(A"(A™' +A)(~1+24))=5F,.

In addition, if we apply & to F,_, + F,A=A", we get F,_, + F,¢= ¢". Conjuga-
tion gives F, | + an_b = ¢". Hence,

BE,= (4"~ ).
Finally, if we apply & to
A"+A"=F, _ I+F A+F,_I+F,A=F,_ I+F A+F,_ I+F(I—A)
=(F,_,+F)I=L,1,
we obtain
L=¢"+ 3",

Products. Returning to the product of generalized Fibonacci sequences, we see
that

(GH)m+n = Gm—l Hn + GmHn+l
because

(GH) i =2 (A" ({G,})#({H,})) =2((G
=G, H,+G,H,,,.

1 + Gm A)(Hn—l + Hn A))

m—1
Substituting F in place of G, G in place of H, and +p in place of m gives
G

in=F,_ G, +FG,,, and G_,,, =F_,_ G +F_G

—p+n -pTn+l-

Replacing F_, by (—1)"*'F, in this last identity gives (—1)?G

=Fp+lGn -
F,G,.,. Thus (because F,_; +F,,, =L,),

—ptn

Gp+n = LpGn - (_ ]')PG

—ptn:
Similarly,

Hp+m = Lp Hm - (_ l)pH—p+m :

H,, G,_ H, G,
This shows that ( _(El)p 2 )( nor ) = ( " ! ) Taking the determi-

. H G H G
nant, we obtain ’ " e T

m

H,G,., —H,.,G,=(-1)"(H,_,G,—H,G,_,).

m>~"n+p m—=pn m
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A Link to Lucas Numbers. We close with the not-so-familiar identity mentioned in
the introduction.

ARITHMETIC F1BoNacct SuM. Let {G,} be a generalized Fibonacci sequence. If
m, n,r are integers with n = 0, r # 0, then

Gm + Gm+r + Gm+2r + - +Gm+nr
1 r
=T Nt . Gm - Gm n r+ -1 Gm nr Gm—r >
e e+ (=) (G )]

where L, is the n-th Lucas number.

Proof. By (2), the identity follows from the relation
Am +Anz+r +Am+2r+ +Am+nr

1 r
— . A™ _Am+(n+1)r+ -1 Am+nr_Am—r
1+(-1) —L,[ (=D« )

which in turn follows from
AT AT L AT e AT = AT (ACHEDT ) (AT 1)
and
(A =1)((-4) -I)=(1+(-1)"-L,)L

We can go on proving Fibonacci identities this way indefinitely: Find an algebraic
relation in A; apply (2). But this is really just old wine (the “umbral method” (see [1],
p- 395)) in new bottles (the golden matrix ring).

Acknowledgment. I wish to thank the editor, the referees, and Catherine Yang for their helpful
suggestions.
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Proof Without Words:
The Distributive Property of the Triple Scalar Product

A-(CxD)+B-(CxD)=(A+B)-(CxD)

—ConsTance C. EDwARDS AND PRASHANT S. SANSGIRY
CoastaL CAROLINA UNIVERSITY
Conway, SC 29526
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How (Knot?) to Play Hangman

HARVEY SCHMIDT, JR.
Lewis & Clark College

Portland, OR 97219

Introduction The parlor game Hangman is a guessing game involving two players,
the poser (P) and the guesser (G). P poses an unknown word (there may be house
rules on foreign words, proper names, etc.) to G, revealing only the number of (not
necessarily distinet) letters in the word. G then attempts to uncover the word by
suggesting letters to P. If G correctly identifies a letter in the word, then P exposes all
occurrences of the letter and their positions; if G suggests a letter not contained in the
word, then G accrues an error. The game continues until either the unknown word is
identified or G exceeds the allowable number of errors—and thus is hanged.
Traditionally, we consider the body of the potential victim (G) as composed of
seven parts: a head, a neck, two arms, a midsection, and two legs. If we add (draw)
one of these body parts for each error accrued, then G will be hanged after making
seven errors. If, say, P poses the word unlucky and G, attempting to identify the
vowels first, starts with the eight guesses a, e, i, o, u, t, h, and n, then the game at
this stage can be described by the Figure, and G would be one error away from being

hanged.

unknown words: un_u_ _.
errors: 4, 6,1, o, t, h

]
GALLOWS  mmm

FIGURE 1
An unlucky victim

What is a reasonable mathematical model for this game? In an actual game, P is
constrained to submit a word from an agreed-upon dictionary, so not all combinations
and arrangements of the 26 letters are allowable. Moreover, G has access to the same
dictionary, and partial information about the word may inform successive guesses.
This means, in “real life,” that not all words posed by P are equally likely, and that
successive guesses by G are not independent.

An urn model To abstract this game by removing the “human” aspect—and hence
maybe some of the fun!—we assume that letters are selected (guessed) at random
from a fixed n-letter alphabet A ={ay, a,, ..., a,}. The other fixed parameters, known
to both players, are the allowable number k of errors (incorrect guesses), 1 <k <n,
and the length + of the unknown word. Since P must expose all instances of identified
letters in their proper positions, the order of the letters and the number of times each
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appears is immaterial. Thus, for our purposes a word is determined solely by the
particular distinct letters in the word. Consequently, a word with ¢ distinct letters,
1 <t <n, will be represented simply by

w,=aqa, ...q (i, <ig < -+ <i,).

i “ig e Y,

This abstraction suggests an urn model for Hangman. The urn contains n balls, of
which ¢ are white (correct guesses) and n — ¢ are black (incorrect guesses). Instead of
guessing letters, G now chooses balls sequentially from the urn until either ¢ white
balls or k black balls have been chosen. G wins in the former case and is hanged in
the latter case.

If we let P, be the probability that the ¢-th white ball is drawn on the (¢ +j)-th
draw, then it is easy to see that

t n—t t+j—1
Pz(f—l)( J ) 1 _tin—0)i(t+j-1)! J
J n n—t—j+1 (t = 1)l n
- g

Letting P(w,) be the probability that G uncovers the word w, before the k-th
incorrect guess, we have the following formula. (The latter equality is due to a well
known combinatorial identity (see, e.g., [2], (56)).

THEOREM 1. With notation as described,

P(w)=kip.= 1 "i(ﬂj—l)_(tzli_ll)
B A

For the poser P, the optimal strategy is to pose a word for which the probability
P(w,) is minimal. In the earlier example, with fixed values n =26 and k =7, a quick
glance at Table 1, which gives the values of P(w,) for 1 <t <n —k, reveals a striking
symmetry, centered at ¢ = 10, which allows the poser P to select a word of optimal
length.

Although it may not be immediately apparent from Table 1 or the expression for
P(w,) in Theorem 1, the precise symmetry illustrated in the table is captured in
Theorem 2. (The notations | | and [ ] represent the floor and ceiling functions.)

j=0

TABLE 1. Winning Probabilities for G

t P(w,) t P(w,)

1 0.269307769 11 0.001601831
2 0.086153846 12 0.001922197
3 0.032307692 13 0.002608696
4 0.014046823 14 0.004013378
5 0.007023411 15 0.007023411
6 0.004013378 16 0.014046823
7 0.002608696 17 0.032307692
8 0.001922197 18 0.086153846
9 0.001601831 19 0.269307769
10 0.001507605

THEOREM 2.

() Fork+t<nand 1<t<|(n—k)/2|, P(w)=P(w,__, 1)
(ii) The minimum value of P(w,) occurs when t = [(n —k) /2].
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Proof. Both assertions follow directly from the observation that the expression for
P(w,) can be reorganized to isolate the parameter ¢:

(t+k—1) (n+k—l)

k—1 n

= . 1

(n n+k—1 (1)
t t+k—1

For a fixed n and k, the values of the binomial coefficient in the denominator on the

right side of this equality are well known to be symmetric about the closest integer to

(n —k +1)/2, with the largest value occurring when t = [(n — k) /2]. The proof is
complete.

Coda and disclaimer As anyone who has played this game in real life can attest,
this analysis is not very realistic! The illustrating example, with parameters n = 26 and
k =17, suggests that the poser should select a word with 10 distinct letters. In this case,
if G guesses randomly, then G’s probability of winning is roughly 0.0015. Yet most
experienced players succeed at uncovering a proposed word much more often than
once in a thousand attempts. Indeed, who would find interesting a parlor game with
such low odds of success? Moreover, 10-letter words are not all that common in the
English language. (How many can you write in 5 minutes? How many are there in this
article?) Finally, with the parameters given in the example above, intuition might
suggest that words with fewer than 10 letters would present a greater challenge
because of the difficulty in establishing patterns.

What this model lacks is any notion of “structured” guessing, based upon knowl-
edge of the dictionary and the frequency of particular combinations of letters. Some
algorithm for assigning relative or conditional probabilities after each successful
identification of a letter in the proposed word would seem to address some of this
deficiency. Nevertheless, P can select, for example, obscure words with either unusual
letter combinations or all-too-common letter combinations, leaving G unable to
eliminate sufficient combinations of letters as impossible. In fact, knowing that the last
two letters of -a 3-letter word are a and t provides no assurance that G will not be
hanged in a game allowing only seven errors.

Appendix: A footnote on recursion Because the binomial coefficient (tHi_ 1)

appearing in the expression for P(w,) in Theorem 1 has various recursion properties,
it is also possible to analyze P(w,) recursively. In order to develop recursion
expressions for P(w,), we follow Cohen ([1]) and adopt the notation

(-(r17)

This expression satisfies many combinatorial identities. The following well-known
examples follow directly from (2):

)=l .
[()-tlit)-e=al e ”
<ttl>=,.=io<;>' (5)
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If we let P(k,t)=P(w,), in order to display all the parameters simultaneously,
then using the identities above we may rewrite P,(k,¢) as

P,,(k,t)=#)f2: (1) byl

_— o 3

- _)<,ii11> [by (5)]

n
t

()

= [by (4)]. (6)
(?) y (4 6

P

| &

With (6) in hand, straightforward algebra leads to the following natural analogues of
familiar recursion expressions for the binomial coefficients:

_k Je+1 t
By(k,t+1) = ”1(§1)k >= ::j:é%; — A ke,
1

t
k+l/e) oo
P(k+1,1)= t(¢§k> - ’(’kz;))<£> - thP,,(k,t);
k[t Ele\ _
e (;%}) : t<<k>i o(; L,

and finally

kle=1\ k[ t k/t—1 k[ ¢
t\ k t\k-1 t\ k t\k-1
P(k,t)= / / +

k /r—1 k—1<t >
t—1 t—1 k t \k—-1

t(n—t+1) (tf13 tr-T (?)
k

=LP(

k
itn—t+1) (Rt =D+ =g Pk = 1.0).
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PROBLEMS

GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by September 1, 1997.

1519. Proposed by Sam Northshield, SUNY, Plattsburgh, New York.

Given a sequence (a,), , let Ay =1 and

Ay= [T (1+ja)

1<k<i

for positive i and nonnegative j. What sequences (a,) satisfy A;=A; for all
nonnegative i and j?

1520. Proposed by Victor Kutsenok, St. Francis College, Fort Wayne, Indiana.

(a) Given points A and B in the plane, describe the set of points C in the plane
such that A, B, and C form a triangle satisfying am, = bm,,, where a = BC, b = AC,
and m, and m;, are the lengths of the medians from A and B respectively.

(b) Given points A and B in the plane, describe the set of points C in the plane
such that A, B, and C form a triangle satisfying al, = bl;, where [, and [, are the
lengths of the angle bisectors from A and B respectively.

1521. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Let a function f: R — R satisfy

Fx =) = (=) [ 1) )+ @ f)" ().

Prove that f(rx) = rf(x) for all rational r and all real «.

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an e-mail
address.

141
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1522. Proposed by Bogdan Kotkowski, Kent State University, Tuscarawas Campus,
New Philadelphia, Ohio.

Prove that if
cos® a + cos® B+ cos®y + 2cos a cos Bcosy=1
and two of the expressions
cos a cos 3+ cos vy, cos 3 cosy+ cos a, cos y cos a + cos 3

are positive, then the third expression is also. Moreover, if @, B, and y are positive
numbers less than 77, then e+ B+ y= 7.

1523. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York.

Let m and n be positive integers. Show that the Maclaurin series expansion of

¥ _i __l-mx sin —l-arcsin 3‘/§ na?
ST (3 ( : (1—mx>‘“’))

has integer coefficients.

Quickies

Answers to the Quickies are on page 150

Q862. Proposed by John Bonomo, St. Mary’s University of Minnesota, Winona,
Minnesota.

In AA,CyA, below, all of the 2n triangles A, |C;A; and C,_| A, |C,, i=
1,2,..., n, have the same area. Find A,C,/A,C,.

n n

Q863. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada.

Prove that
2

n n n 1/-‘ n n
n[Zaibi+ ( Za?Zb?) }ZZZaiZbi,

i=1 i=1 i=1 i=1 i=1

where the a; and b, are real. Determine when equality holds.
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Q864. Proposed by Kung-Wei Yang, Western Michigan University, Kalamazoo,
Michigan.

For every real 2 X 2 matrix A, show that it is possible to find a matrix B and a
symmetric matrix C for which A=B + C, det A=det B+ detC, and det B> 0>
det C.

Solutions

A Primality Condition April 1996
1494. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York,
and Ira M. Gessel, Brandeis University, Waltham, Massachusetts.

Let n > 2 be a positive integer. Prove that n is prime if and only if (” N 1) =(-D*
(modn) for k=0,1,...,n— 1.
L. Solution by Helen M. Marston, Princeton, New Jersey.

If n is prime, then every i, 1 <i <n — 1, has an inverse i ' (mod n). Therefore,
forO<k<n-—1,

(n—l) ﬁ” i lj(n_,),—l—( 1)*(mod n).

i=1

If n is composite, let p be the smallest prime factor of n. Then (" 1) (=pr!
“(mod n) as above. But

(n;l)=(;‘:})(p _ )_( 1)~ 1( 1),%(—1)” (mod n),
since n/p # 0 (mod n).

II. Solution by Stephen Noltie, Ohio University—Lancaster, Lancaster, Ohio.
Suppose first that n is prime. For k=1,2,...,n — 1, the denominator of (:) =

n(n — 1)+ (n — (k — 1)) /k! is not divisible by n, hence the integer (Z) =0 (mod n).
Clearly (" 1) 1=(—1° (modn). For k=1,2,...,n— 1,

(n;l) _ (Z) _ (Z:i) = —(Z:i) (mod n),
and ("; 1) =(=1)* (mod n) follows by induction.
On the other hand, if n is not prime, let p be a prime factor of n. Suppose p® is

n

the largest power of p dividing n. Then ) is divisible by p*~! but not by p*.
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(Z)=(;:i)+(n;l)$—é0(modn).

It follows that (" - i) =(—1"""! (mod n) and (" ) ! ) =(—1)? (mod n) cannot both be

P

Therefore,

true.

Also solved by Ricardo Alfaro, Pablo Armas (student, Argentina), Roy Barbara (Lebanon), Marc A.
Brodie, John Christopher, Curtis Coker, L. L. Foster, Zachary Franco, E. C. and S. A. Greenspan,
Jennifer Hyndman (Canada), Kee-Wai Lau (Hong Kong), Tamds Lengyel, Marijo LeVan, Lester Lev y,
James T. Lewis, Hiren Maharaj, David E. Manes, Kandasamy Muthuvel, Josh Nichols-Barrer (student),
Joel Rosenberg, Harvey Schmidt, Jr., Lawrence Somer, Alan H. Stein, Ajaj A. Tarabay and Bassem B.
Ghalayini (Lebanon), Michael Vowe (Switzerland), Monte J. Zerger, David Zhu, Paul J. Zwier, and the
proposer. There were two incomplete and two incorrect solutions.

Chord in an Inscribed Quadrilateral April 1996
1495. Proposed by Achilleas Sinefakopoulos, student, University of Athens, Greece.

Let angles B and C of AABC be acute, and let K be a point on arc BC of its
circumcircle. Let L be the intersection of chords AK and BC. The feet of the
perpendiculars from L to AB and to AC are M and N, respectively. Prove that if the
area of A ABC equals that of quadrilateral AMKN, then AK bisects angle A.

Solution by Michael Vowe, Therwil, Switzerland.

The problem is incorrect as stated. Chord AK may be either the angle bisector of
angle A or a diameter of the circumcircle of A ABC. Furthermore, we assume M is
on segment AB and N is on segment AC, which may have been ambiguous in the
problem statement.

Let [ ABC] denote the area of A ABC and [ AMKN] denote the area of quadrilat-
eral AMKN. Let a; = £ BAK, a, = £CAK, and R be the radius of the circumcircle
of A ABC.

Since ABKC is a cyclic quadrilateral, Ptolemy’s theorem implies

AK-BC =AB-CK+ AC-BK,
hence

AK-2Rsin(a, + ay) = AB-2Rsin a, + AC-2Rsin a;,

A
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and

AK = ABsin a, + AC sin a; ABsin a, + AC sin a;

sin( @, + a,) sin &} cos @, + sin @, oS a;

We also have
[ ABC]=[ABL] + [ ACL] = %AL( AB sin &, + AC sin o)
and

[AMKN]=[ AMK]+[ANK] = %AK(AMsin a; + ANsin @)

1
= 5 AK-AL(sin a; cos a; + sin a, cos a,)

2
1  ABsin ay, + AC sin a4
2

. - AL(sin a; cos a; + sin @, cos ay).
sin a; cos a,y + sin a,y cos a

After some simple algebra, we see that [ ABC]=[AMKN] if and only if
(ABcos a, — AC cos a, ) (sin® a; — sin® a, ) = 0.

If the second factor is 0, then a; = @, and AK bisects angle A. If the first factor is 0,
then AB/cos a; = AC /cos a,, hence the perpendicular to AB through B, the
perpendicular to AC through C, and AK are concurrent. It follows that K is the
point of concurrency, so that AK is a diameter of the circumcircle of A ABC.

Also solved by Roy Barbara (Lebanon) and Victor Kutsenok. There were three solutions that missed the
second possibility, as did, regrettably, the editors.

A Differential Equation April 1996

1496. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada.

Find a solution to the differential equation d*y/dx*= —kx/y*, k > 0, other than
one of the form y = ax®/".

L. Solution by Hongwei Chen, Christopher Newport University, Newport News,
Virginia.

The given differential equation is a special case of the Emden-Fowler equation
d?y/dx® = Ax"y™. All possible solvable cases are given in A. D. Polyanin and V. F.
Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC
Press, 1995, 241-250.

We claim that the general solution to the differential equation is given in the
parametric form

-1

-1/2
x=(Czif(%t_3+Cl) dt) ,

_1/2 -1
y=t(C2i/(2—8{ct_3+Cl) dt) ,

where ¢ is a parameter, C; and C, are arbitrary constants.
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The transformation x = 1/s, y = t(s)/s changes the equation into
d’t 1 d%y
— == —L = —[47*,
ds® 5% dx?
By using the substitution
w(t) =dt/ds,

this equation is reduced to the first order equation

do  dw/ds  dt/ds kTt
dt dt/ds =  w = @ w

Integrate to obtain
2k
w?= Tt_S +C,,
where C, is a constant. Thus,

9 1/2
dt _ i(Tkt'3+Cl) ,

so that
—1/2
i—f(%t_s'l'cl) dt = [ds,
and therefore

-1/2
s=C2i/(%t_3+C1) dt,

where C, is an additional constant. Hence, the general solution of the original
equation is given by

3
y =t(C2 + (%t*’ + Cl)_l/z dt)_l
Setting C, = 0 leads to
x (C2+ E%th)_l,
so that
t (C + \/@x'l)zﬁ,
and
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I1. Solution by the proposer.
Setting y = xt(x), we get

Multiplying by the integrating factor 2dt /dx, we get

4 ()| d 2k
a\ S\ )T I3
Integrating and taking square roots yields

3
dt 3t®

&TET

As in the first solution above, separation of variables leads to the parametric solution,
and setting C, = 0 allows us to perform the integral to obtain an analytic solution.

There was one incomplete solution.

Cardinality of Sets April 1996
1497. Proposed by Mihdly Bencze, Bragov, Romania.

Given positive real numbers «,..., a,,, let A,..., A be sets of nonnegative
integers such that 0 € A, and A, N{L,2,....,n}[ > a;-n for k=1,...,m and n =
1,2,.... Prove that

m

Y A, n{1,2,...,n}
k=1

> (1— zﬂ(l —ak))n,

where L)' Ay ={a; + -+ +a,,;: a, €A;}.

Solution by the proposer.
Denote |A;N{L1,2,...,n}| by A(n). We proceed by induction on m, the case
m =1 being given. We next prove the case m = 2. Let

O=ry<r <ry< - <rye=n

bein A;. Fori=0,...,A(n)—land every sin A,N{1,2,...,r,,, —r,— 1}, r;+s
gives an element of A, + A, which is greater than r;, but less than r,,,. For each i,
there are at least ay(r;,; —r,—1) such elements. Similarly, there are at least
c;lz(n — T ny) elements of (A, +A,)N{L,2,...,n} that exceed r, (). We conclude
that

[(A,+A,)N{1,2,....0}| = A;(n) + ay(r,— 1) + ay(ry—r, — 1)
+ o +a2(rA1(n) “TAm)-1 " 1) + az(" - rAl(n))
=(1-ay)A(n) +tan=>a(l—ay)n+ayn

=(1-(1-a)(l-ay))n.
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To prove the general case, we simply note that

m+1 m
Y An{1,2,...,n}|= ( YA +A, | Nn{1,2,...,n)
k=1 k=1
z(l—(l—(l— H(l—au))(l—a,m))n
k=1
m+1
= (1— Il (l—ak))n.
k=1
Closed Forms of Two Sums April 1996

1498. Proposed by |. C. Binz, University of Bern, Switzerland.
For n a positive integer, express
h (n - )rf(r— 1)*""% and Z](n - )rj(r— 1)> 72
j=0 J j=0 J
in closed form.

Solution by Joel Rosenberg, University of Michigan, Ann Arbor, Michigan.
We show that

n—j , n—=29i r n 1 n
Z( J‘])”(’”_l)z R NG B A Gk

j=0

nT"+1— -1 n+1
=(r—1) r-(|-1 )
and
N J(r—1)2""2
E)’( j )T( D

_r(nrtn+1-—r) 2 r(nr+n+r—1) )

- (l+r)3 ( )+ (1+r)3 (1 )

P ! Gt o i R V4 e GV 0
(1‘+1)3 :

Let S, (r)= 2120('1;j)rf(r —1)2""% and T (r) = Ejzoj(";j)rf(r —1)?"~2J. Then

S(r)= X ( - )rf(r— 1)
jzo\ J
n—j—1

_ n—j—1 i — 2n—2j
Z( J )( K t L J

j=0 j=1

)rj(r— 1)2n—2j
= (r_ 1)2 Z ((n - 1) _j)rj(r— 1)211—2—2]'
j=0 J
+r(r— 1)2 ¥ ((n—2) -(j-1 )rj_l(r— 1)2n—2j—2

j=1 j=1
= (r=1)%S,_1(r) +r(r = 1), (1),
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so we have a linear recursion for S,(r). The associated polynomial for this recursion is

2= (r=1*x—r(r—1°=(x—(r*=r))(x = (1 -71)).

Thus, we can write
S.(r) =B(r =) +8(1-1)", S(r)=1, 8(r)=(r—1)}
and obtain B=r/(r+1),6=1/(r+1), so

i

j=0

; 2n-2; 1 n
ri(r=1)""" = r+1(r -r)" + g (l=1)

n Tn+1 _ (_1)n+1
=(r=1 r+1 ‘

Similarly, we decompose T,(r) as

T,(r) = Ej("].‘j )rf(r— 1™

j=0

- Zj("‘]ﬁ‘l)rf(r—n“‘gw Zj(";f]l)r«r—l)“‘"‘”

j=0 J j=1

j>0

+1"(7"_ 1)2 Z]((W—Qa) _(]_ 1))1”j_1(7’_ l)2n—2j—2

j=1 Jj—1
= (r=1)’T,\(r) +r(r=1)°T, (r) +r(r=1)"S, 5(r),

an inhomogeneous linear recursion. Because the homogeneous part of the recursion is
the same as that for the S,(r), it follows that the T,(r) satisfy a homogeneous linear
recursion with associated polynomial (x — (r* — r))*(x — (1 — r))*. Therefore, we can
write T,(r) = (an + BXr? —r)" + (yn + 81 — r)", and calculate

To(r) 0 0-a+ 1-B+ 0-y+ 1-8
T,(r) 0 (r2=r)a+ (r2=r)-B+ A—-r)y+ QA —-1r)5
Ty(r) = r(r—1D?* =2(r2 = 1) a+(r2—r)-B+20 —r?)-y+(Q — 1)
Ty(r) =2r(r—D*=3(r2=r)* a+(r?=r)*- B+ 31 —r) y+(1 —r)*§

The solution to this system is (a, B,7v,8)=(r/(L+r)* r(l —r)/Q + 1),
r/(L+r)% r(r—1)/(1 +r)*). We finally obtain

[n=j J(r—1)2""2
j§0]( J )r( D
=r(nr+n+l r), o n, r(nrtn+r—1) oy
(1+7r)° (m=n (1+7r)° (1-r)
(n—]_)(rn+1 —(—1)n+1)+(n+1)7‘(1""_1 _(_l)n—l)
(7’+l)3 ’

=r(r—1)"
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Comments. The value at r= —1 in both formulas is obtained by taking the limit.
Carl Libis uses the recursions for S,(r) and T,(r) derived in the above solution to
prove the formulas by induction. Michael Vowe uses the formula (see page 204 of
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation
for Computer Science, Addison-Wesley, Reading, Massachusetts, 1989)

1+vi+4z """ (1-vi+4z """
f(z)=2(".‘f)zf=( =) =

j=o\ J

>

V1+4z

and its derivative, to quickly obtain the formulas by setting z =r/(r—1)®. The
derivation of this identity is similar to, and a bit simpler than, that given in the solution
above.

Also solved by E. Sparre Andersen and Mogens Esrom Larsen (Denmark), Kuo-Jye Chen (Taiwan),
Curtis Coker, ]. S. Frame, Carl Libis, Heinz-Jiirgen Seiffert (Germany), Michael Vowe (Switzerland), and
the proposer.

Answers

Solutions to the Quickies on page 142
A862. Because AAC, A, and AA,C A,
AC,  Area(AAClA))  2n—1

A,Cy  Area(AA,CyA,)  2n

share an altitude from A,, we have

Applying this observation to AA,C, A, and AA,C, A, and so forth, we obtain
AC, AC AC, AC, 211 20-3 1 _ (2n)!

n n n n .

AC, AC, AC,  "AC,_, ~ 2n 2n-2232 '2—_‘2,1(1”)2-

A863. Let a=(ay,...,a,), b=(b,,...,b,), and ¢ denote n-dimensional vectors.
The given inequality will follow from the more general le|®(a-b + |al|b]) >
2a-c)b-c) by setting ¢ =(1,...,1). Let a, B, and y denote the angles between a
and ¢, between b and ¢, and between a and b, respectively. The generalized in-
equality is now equivalent to |al|blcosy + |al|b| > 2|a||b|cos a cos B, or cos y + 1
> 2cos a cos B. Since in the trihedral angle a+ B>y and 27— (a+ B) >y, it
suffices to show that

1+cos(a+B)=2cosacos B or 1>cos(a—p).
Equality holds if and only if a=p and either a+B8=7vy or a+B=27—17y. In
particular, a, b, and ¢ must be linearly dependent if equality holds.

A864. Letting A = (‘C’ Z), we have

det A=ad —be= 1 ((a+d)* +(b—0)*— (a—d)* ~ (b +0)?)

a+d b-c a—d b+tc
9 2 2 2
_det C—b a+d +det b+C d_a
2 2 2 2
_fa+d/2 b—c/2 _[|a—-d/2 b+c/2
Thus,wemaysetB—(C_b/2 a+d/2) andC—(b+6/2 (l—a/z)'



http://www.jstor.org/page/info/about/policies/terms.jsp

REVIEWS

PAUL J. CAMPBELL, editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

Dawson, John W., Jr., Logical Dilemmas: The Life and Work of Kurt Gédel, A K Peters,
1997; xiv + 361 pp, $49.95. ISBN 1-56881-025-3.

This book is likely to be the definitive biography of Godel, by a mathematical logician who
catalogued his papers and is co-editor of his collected works. Author Dawson mentions and
briefly describes Gddel’s mathematical results but does not try to explain them in detail.
Readers will be saddened by the details of the mental illness that afflicted Gédel for most
of his life and led to his death.

Poppe, Christophe, and Madhusree Mukerjee, Prize mistake: The n-body problem is
solved—too late, Scientific American 276 (2) (February 1997) 22. Diacu, Florin, The
solution of the n-body problem, Mathematical Intelligencer 18 (3) (Summer 1996) 66-70.

The n-body problem in celestial mechanics is: Given initial locations and velocities of n
bodies moving under Newton’s laws of motion, find functions that describe their locations
at all future times t. The case n = 2 was solved by Johann Bernoulli in 1710. In 1888,
Henri Poincaré showed that the case n > 3 can include chaotic behavior and that the
general problem cannot be solved by the method of integrals. Mathematical folklore ever
since holds that the n-body problem, for n > 3, is unsolvable—or else the problem is
open—depending on the oral tradition. In fact, as these articles reveal, the case n = 3 was
solved in 1909, except for initial conditions that may lead to a triple collision. The method
used does not extend to higher n. However, in 1991, Quidong (Don) Wang, a graduate
student at the University of Cincinnati, gave a power series solution for the n-body problem,
except for singularities (including collisions). Perhaps equally surprising, his solution is not
practical—it “presents only historical interest,” says Diacu—because the series solutions
have very slow convergence. In the meantime, important practical special cases have been
solved sufficiently accurately to send spacecraft throughout the solar system.

Stewart, Ian, Mathematical recreations: Crystallography of a golf ball, Scientific American
276 (2) (February 1997) 96-98.

A golf ball with dimples flies farther; practicality (avoiding swerve) demands that the
dimples be placed more or less symmetrically. So, how many dimples, and how to arrange
them? Numbers from 252 to 500 are found on balls. The maximum finite order of symmetry
for a group in three dimensions is 120 (the group of the icosahedron or of the icosahedron),
but most golf balls have lesser symmetry. Readers interested in the distribution of dimples
on golf balls may also enjoy a paper by R.H. Hardin and N.J.A. Sloane that relates work
of the “Codemart” team that has investigated “nice” ways of placing points on a sphere:
Codes (spherical) and designs (experimental), in Different Aspects of Coding Theory, ed.
A R. Calderbank, Proc. Sympos. Appl. Math., 50, AMS, 1996, pp. 179-206.
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Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg, An economics approach to hard
computational problems, Science 273 (3 January 1997) 51-54.

Suppose that you have a problem and two algorithms for it that always produce a solution
but with probabilistic distributions of solution times. How should you apportion your
computing resources to solve the problem? The naive answer is to devote all the computer
cycles to the algorithm with shorter expected time, especially if it has the smaller standard
deviation as well. The authors show that running the two algorithms concurrently but
independently on a serial processor can reduce both the expected time to solution and its
standard deviation (which they call “risk”); the key to optimal reduction is the fraction
of cycles allocated to each algorithm. The same counterintuitive result applies with two
independent instances of the same algorithm with different random seeds. Generalization of
the idea produces “computational portfolios” that are “unequivocally preferable to any of
the component algorithms.” The authors apply the idea to the NP-complete graph-coloring
problem, for which appropriate tuning of the cycle-mix of two independent instances of the
Brelaz heuristic decreases both expected solution time and its standard deviation by about
30%. Cooperating algorithms whose expected lengths of time are negatively correlated have
even better performance and lower risk than independent algorithms.

Horgan, John, Profile: Ronald L. Graham: Juggling Act, Scientific American 276 (3)
(March 1997) 28, 30.

This light profile of one of the gentlest ambassadors for mathematics includes a photo of
Ron Graham in fool’s cap juggling a cauliflower, a red pepper, an eggplant, and (ouch!) a
pineapple. Perhaps Graham, chief scientist and a manager at AT&T Labs—Research, and
one of the most respected and beloved of mathematicians, will replace the late Paul Erdds
as journalists’ favorite “poster boy” for mathematics.

Luoma, Keith, The truth behind “famous name” mathematics, Mathematical Gazette 80
(1996), 297, 349-351.

Mathematicians refer to concepts and results by names that flaunt what they know from
history. Cramer’s rule does not appear in Cramer’s works; Horner’s method was known to
earlier Chinese, Pascal’s triangle to Chinese and to Indians before them; and Simpson’s rule
and Taylor series appear earlier in the work of James Gregory. Such false attributions are
examples of Stigler’s Law of Eponymy, which says that no result is named after the person
who first discovered it. Of course, the Law applies also to itself, according to its namesake
Steven Stigler (University of Chicago). Maybe it’s time, though, for the International
Mathematical Union to appoint a commission to recommend more apt naming of named
theorems, and for mathematicians thereafter to amend their practice accordingly.

Borwein, Jonathan M., et al. (eds), Proceedings of the Organic Mathematics Workshop.
Hypertext at http://www.cecm.sfu.ca/organics/contents.html ; also to be available in
printed form from the Canadian Mathematical Society.

The organizers of the Organic Mathematics Workshop (December, 1995, at Simon Fraser
University) wanted to create an environment for ezperimental mathematics that would
use the latest technology. The conference papers are available on the World Wide Web
in a plethora of electronic forms and contain links at suitable places to animations and
computer algebra code. Readers can annotate the papers and contribute their own articles.
The resulting hypertext has papers by David H. Bailey et al. (how to compute one billion
digits of pi), Joe Buhler and Ron Graham (on juggling), Jeff Lagarias (the 3z + 1 problem
and generalizations), Andrew Odlyzko (zeros of the zeta function), Stan Wagon (visualizing
differential equations), and others.
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NEWS AND LETTERS

57th Annual William Lowell Putnam Mathematical
Competition

A-1 Find the least number A such that for any two squares of combined area 1, a rectangle
of area A exists such that the two squares can be packed into that rectangle (without the
interiors of the squares overlapping). You may assume that the sides of the squares will be
parallel to the sides of the rectangle.

Answer. We can always accommodate the two squares inside a rectangle of area A =

(1+v2)/2.

Solution 1. Suppose the squares have sides of lengths z and y. We may suppose without
loss of generality that z > y > 0. Place the squares so that their bases lie on the z-axis with
their lower right corners at (z,0) and (z + y, 0). We wish to maximize z(z + y) subject to
the condition that 22 + y? = 1. Equivalently, we must find the maximum value of A(z) =
z(z+vV1—2%) forv2/2<z <1
To find the critical points, we set the derivative equal to zero:
2
dA@) s I+ =2 =0

dz V1— 12

This yields 422 = 2 4+ /2, 4y? = 2 — /2, and 4zy = /2; at this point v/2/2 < z < 1
and A has the value 22 + zy = (2 + v/2)/4 + v/2/4 = (1 + v/2) /2. Since this is greater
than 1 (the value of A(z) at the endpoints), it must be the maximum value.

Solution 2. Let z = cosf and y = sin 6, with 0 < 6 < 7/2. Then
z(z+y) = cosf (cosf+sinh) =2 cosh (—1— cosf + 1 sin0>
o= - V2 V2
1

V2 cosf sin (7/4 +6) = 7 (sin (20 +7/4) + sin(7r/4)),

which is maximal for 26 4+ 7 /4 = 7 /2. For this value of §, we have z > y, so the maximum
value we desire is (1 + sin (7/4)) /v/2 = (1 + V2)/2.

A-2 Let Cy and C; be circles whose centers are 10 units apart and whose radii are 1 and
3. Find, with proof, the locus of all points M for which there exist points X on C; and Y’
on C such that M is the midpoint of the line segment XY

Solution. Take the centers of C;, C2 to be O; = (=5,0),02 = (5,0). The set comprises
the closed annulus bounded by circles with center O = (0, 0) and radii 1 and 2.

The following construction (see the left-hand figure) is possible just if M is in the set. The
circle with center M and radius 1/2 cuts the circle with center O and radius 3/2 at P. (In

153


http://www.jstor.org/page/info/about/policies/terms.jsp

154 MATHEMATICS MAGAZINE

general, there are two such P; select either.) Draw radii O; X, O2Y parallel to PM, OP
respectively. Then M is the midpoint of XY, because Oy, P, Y are collinear, O; 0 = 0Oa,
and O; P = PY.

To see that X, Y do not exist for points not in the annulus, let N be such a point. (See the
right-hand figure.) Let X traverse the circle C. Then the locus of Y, where X, N, Y are
collinear and XN = NY, is a circle of radius 1 and center N5, where O3 N3 is parallel
to ON and twice its length. This circle is either entirely interior or entirely exterior to Cs,
according as N is inside or outside the annulus.

A-3 Suppose that each of twenty students has made a choice of anywhere from zero to six
courses from a total of six courses offered. Prove or disprove: There are five students and
two courses such that all five have chosen both courses or all five have chosen neither.

Solution. The 6 x 20 incidence matrix shown below, made so that the (g) = 20 vertical

triples (of 1°s or of 0’s) are all distinct, shows that the statement is false; namely, each of the
(g) = 15 pairs of rows have at most four 1’s, and at most four 0’s, in common.

111111111100O0O0O0O0O0O0O0TO
111100000011 11110000
100011100011 10001110
01 001001101001 101101
001001010101 010110011
0001001011001 0110111

Alternatively, in this arrangement, the 20 x (3) = 60 vertical pairs occur four times in each
of the 15 pairs of rows, and no such pair occurs as many as five times.

A-4 Let S beasetof ordered triples (a, b, ¢) of distinct elements of a finite set A. Suppose
that:

(1) (a,b,c) € S ifandonlyif (b,c,a) €S,
2) (a,b,c) € S ifandonlyif (c,b,a) €S,
3) (a,b,c)and (c,d,a) are bothin S if and only if (b, ¢, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g : A — R such that g(a) < g(b) < g(c)
implies (a,b,¢) € S.

Solution. Intuitively, one regards A as a subset of a circle and S as the set of triples in
counterclockwise order. To obtain a linear order, we have to choose a starting point. Fixing
ap € A, we define arelation < on A by
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(i) Forallb# ao,ag < b.

(ii) If ag, b, and c are all distinct, then b < cif and only if (ag, b,c) € S.

By (1) and (2), for all b # ¢, either b < cor ¢ < b, but not both. By (1) and (3), b < ¢
and ¢ < d implies b < d. Thus < gives A the structure of an ordered set. Defining g(a) =
{be A | b<a}|, weseethat g(a) < g(b) < g(c) impliesa < band b < ¢; ifa = ao,
then (a,b,c) € S by definition. Otherwise, (ag,a,b) € S, (ag,b,c) € S, and the result
follows from (1) and (3).

Solution. If p is a prime number greater than 3, and k = |2p/3], prove that the sum

p p p
5+ )+ ()
of binomial coefficients is divisible by p?. (For example, ({) + (1) + (1) + ({) = 7+ 21+
35+35=2-7%)

Solution. Each binomial coefficient is divisible by p, since p divides the numerator and not
. ! .
the denominator of #;r)!. Thus we wish to show that

p—1 (-1(-2) P-1)--(p-k+1)
e N 73k

is divisible by p. The terms are all integers and we express the sum as a sum of fractions
whose numerators are multiples of p and whose denominators are prime to p. The sum is

equal to
per | pes DCk 1 1 (—1)k-?
T T +k,+<1—§+§ +— )
where the c; are integers and the final parenthesis is, when p = 6¢ + 1 and k£ = 44, equal to
1o+ tyop ooyt Yo o Lo
2t 4q 2 4 4q)  2q+1 2¢+2 4q
- (@) () (e )
- 2q+1 2¢+2 4g-1 2¢+q 49-(¢-1)
p
(2¢ + 1)4¢ + 1)4q 3¢(3¢ +1)
and, when p = 6¢ + 5 and k = 4q + 3, equal to
1oy teli 1 Lol LR S
2 3 49+ 3 2 4 4q+2 2q+2 29+ 3 4q9+ 3
B 1 Ly (L, ( 1 )
T o\2¢+2 4q+3 2¢+3 4q+2 2¢+q+2 4q+(3—q)
P + p ‘e
(2¢+2)(4g+3)  (2¢+3)(4g+2) (3q+2(3q+3)

A-6 Letc > 0 be aconstant. Give a complete description, with proot, of the set of all
continuous functions f : R — R, such that f(z) = f(z? +c) forallz € R.

Solution. We begin with the general observation that f(z) = f(z? +¢) = f(—z),so0 f is
always even. Conversely, the even extension of any continuous function on [0, co) satisfies
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the functional equation as long as the original function does. Therefore, we may and do
restrict attention to z > 0 in everything that follows. We consider two cases.

Case I: 0 < ¢ < 1/4. Here, 2% — = + ¢ = 0 has positive zeros, a = (1 — /1 —4c)/2
and b= (14 +/1—4c)/2. If 0 < ¢ < b and we define z,4; = 2 + c, the monotonicity
of 22 + c on [0, 00) implies that g, 1, ... is monotonic (increasing for 0 < zo < a,
decreasing for a < z¢ < b) and bounded, therefore convergent, and therefore convergent
to a since the limit must satisfy L = L? + c. As

f(wo) = f(@1) =+ = lim f(zn) = £ (lim on) = £(a),

n—o0o

we have f(z) = f(a) forallz,0 < z < b.

If zo > b, the monotonicity of \/z — ¢ guarantees that zo > /Zo — ¢ > b, so we can
define, recursively, ,+1 = /T, — c. Again, the sequence (., ) is bounded and monotonic;
therefore it also has a limit, and this limit must be b. Then

f(wo) = f(@1) =+ = lim f(za) = f (lim wn) = £(0).

As the range of f is finite and f is continuous, it is constant.

Case2: ¢ > 1/4. Now,z —» x? +chas noreal fixed points. Settingty = 0, tn41 = t2+c,
the sequence (;) is monotonic, so if it didn’t go to infinity, it would have to converge to a
(non-existent) fixed point. So each z > 0 is in some interval [ty tat1]-

Let g be any continuous function on the interval [0, ] such that g(¢) = ¢(0). Define

¢(z) = v/ —cand

(g(m) forz € [0, c] = [to, t1]
g(¢(z)) forz € [¢,c? + c] = [t1,t2)
f(z) =4 (d(o(z))) forz € [t2’t3]

and in general

9(p(g(- -~ (8(z))---))) forz € [tn,tnt1].
| SRR

\ n

By construction, f(z) satisfies the desired functional equation. Continuity is obvious except
at the points t;, where it follows from g(c) = g¢(0). Conversely, every function f(z) is
determined by its values on [0, c).

B-1 Define a selfish set to be a set which has its own cardinality (number of elements)
as an element. Find, with proof, the number of subsets of {1,2,...,n} which are minimal
selfish sets, that is, selfish sets none of whose proper subsets are selfish.

Solution. There are F;, subsets of {1,2,...,n} that are minimal selfish sets. Here F, is
the nth Fibonacci number, given recursively by F; = Fy = 1, and Fy42 = F}, + Fj41 o1,

in closed form, by F,, = —\175 ((%)n - (%g)n)

To show this, we first show that a subset A C {1,2,...,n} is a minimal selfish set if and
only if the least element of A is the cardinality of A. If: If the least element of A is the
cardinality of A, then the cardinality of any proper subset B C A is not an element of A,
let alone of B, so B cannot be selfish; since A is selfish, A is a minimal selfish set. Only
if: If A had an element a less than its cardinality, then one could omit elements of A so that
the resulting proper subset B still contained a and had a as its cardinality, so B would be
selfish and A would not be a minimal selfish set.
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Now we can count the minimal selfish sets that are subsets of {1,2,...,n} by looking
at their least elements (= cardinalities). If the least element is %, then there are ¢ — 1 other
elements, to be chosen from the n—i elementsi+1,7+2,...,n0f {1,2,...,n}. Therefore,

the desired number is
i n—1y (n-1 + n—2 4.
~\i—-1)  \ 0 1 ’
=1

which is well known (and can be shown by induction) to equal F,.

B-2 Show that for every positive integer n,

2n—1
2n—1\ 2
e

Solution. The statement is true for n = 1 (since 1 < e < 3, and we have (1/e)'/2 < 1 <
(3/€)3/?) so we can get a proof by induction if we can show that

2n+41
2n+1 2
€
2

2n+1
o+ 1) 77
<1~3'5-~(2n—1)<<n:— ) .

For the left-hand inequality, note that

2n+1
(2n+1) 2 2n—1 2n—1
2 2 2 1
e _1=2n+1 2n+1 =2n+1 14 2 < n + e = on+l.
2n=1 e 2n -1 e 2n -1 e
2n -1\ 2
e
For the right-hand inequality, we have
2n+43
2n+3\ 2 2n+1 2n+3
e _ 2n+3 <2n+3> 2 _2n+1(2n+3> 2
2n+l - )
n+1\ 2 e 2n+1 e 2n+1
e
2n+3
. 2n+3 . . .
so it is enough to show e < 1 . This can be done by taking logarithms:

2n43
. 2n+3\ 2 B 2n+3ln - 2
2n+1 - 2 2n+1
2n+3 2 1 2 2+1 2 o
2 m+1 2\2n+1 3\2n+1

2n+3 2 _1
2 2n+1 2 2n+1
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since the terms are decreasing in size and alternating in sign, and

2n+3( 2 1/ 2 \*\ _ 2n+3 @nt1-1)
2 2n+1 2\2n+1 T (2n+1)2

4n? + 6n
= - > 1.
4n2 +4n+1

B-3 Given that {z1,23,...,2,} = {1,2,...,n}, find, with proof, the largest possible
value, as a functionof n (n > 2),of £125 + 2223 + -+ + Tp—1Tn + To1.

Solution. Let F'(n) be the desired maximum value. We will show that forn > 3, F'(n) =
F(n — 1) 4+ n? — 2. It will follow that

F(n) = F(2)+Z(k2—2 —4+Z ~2) —3+§:
= 34 (n+1)6(2n+1)_2n:2n +3n6—11n+18'

To show F(n) = F(n—1)+n? — 2 it is convenient to show simultaneously, by induction
on n, that the maximum value F'(n) can be reached with an arrangement for which z; =
n — 1, z, = n. Note that we can certainly assume that £, = n by cyclically permuting
ZTi,%2,...,%T,. We then have

TiT2+ 0+ Tpo1Tn +Tn1 = T1T2 4 -+ Tn—2Tn—1 + N(Tn_1 + 1)
2
= 1To+ -+ Tp2Tn_1 + Tn_121 +1° — (N — Tn_1)(n — 1).

Since n — z,—1 and n — z; are distinct positive integers, we have (n — ,,—1)(n — 1) > 2
and thus

T1T2 + + Tno18n + TuZ1 S T1T2 + -+ Tpo1@1 07 —2< F(n— 1) +0° - 2.

If we choose z1,...,Tn_1 Withzy =n—2, 2,1 =n—1,and 2122 + -+ - + 2,12, has
its maximum value F'(n — 1), then both inequalities above will be equalities, showing that
F(n) = F(n — 1) + n? — 2. But since this maximum value can be reached for z,_; =
n — 1,x, = n, it can also (by reversing the order of 1, . . ., Z, and permuting cyclically)
be reached for z; = n — 1, z,, = n, and we are done.

B 4 For any square matrix A, we can define sin A by the usual power series: sin A =

z ———__ A?*+1_ Prove or disprove: There exists a 2 x 2 matrix A with real entries
(2n + 1!

0 1

Solution. We’ll show that there is no such matrix A. First of all, note that for any invertible
matrix P and any square matrix B of the same size,

Sin(PBP_l) = Z (2( i)l)'(PBP—l)2n+l — ngo (2(71_—]"-)::)'133271—%113—1

such that sin A = (1 1996) .

— (=D _,. _ . _
= P (;) (—2(n+—)1)!32 +1> P! = P(sinB)P~!.
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Thus the sines of similar matrices are similar.

Now any 2 x 2 matrix A with real entries is similar to either a diagonal matrix <)61 /{) )
2

. . . . (XA ¢ . . .
with real or complex entries A1, A2, or a triangular matrix ( Y with real entries A, ¢ (in

fact, one can take ¢ = 1). Therefore, sin A is similar to either sin <)61 ;) ) orsin (3 i) .
2

. (A O . . . A0 .
But sm( 0 /\2) will be a diagonal matrix, since all powers of ( 0 /\2> are diagonal,

and no diagonal matrix is similar to ((1] 19196) , since the latter matrix is not diagonal-
. e 1 1996
izable. So if sinA = 0 1) then there must be real numbers \ and ¢ such that

11996 is similar to si Aoc
0 1 is si nlo )

2
LetU = ())‘ i . We compute sin U explicitly: we have U? = ()(‘) 2):\20), U® =
A3 3% . . n A" nAnTle
( 0 \3 ), ... ,and, by induction, U™ = ( 0 \n ) Therefore,

NIE

snl = (=" </\2""‘1 (2n+1))\2”c)

A (2n + 1)! 0 A2+l
—1 nA2n+l -1 "A2"
_ E( (2)n+1)! Z( (z)n)!2 +f>
—1)" A%
0 > S
sin\ ccosA
0 sin\ /’

3
Il

I
N

0 19196 , the double eigenvalue sin A must equal 1. But

then cosA = O and so sinU = (1 0) , which is not similar to (1 1996

For this matrix to be similar to

N
—

01 0 1
we have a contradiction, and we are done.

) after all, so

B-5 Given a finite string S of symbols X and O, we write A(S) for the number of X’s
in S minus the number of O’s. For example, A(XOOX0QO0X) = —1. We call a string S
balanced if every substring T" of (consecutive symbols of) S has —2 < A(T) < 2. Thus,
XOOXO0OX is not balanced, since it contains the substring OOX OO. Find, with proof,
the number of balanced strings of length 7.

Solution. For a balanced string S, let S be the string obtained from S by reversing the last

symbol (from O to X or vice versa). Call the string S dangling if S’ is also balanced and

pinnedif S' is not balanced. For any n, let ,, be the total number of balanced strings, and let

d, prn, be the numbers of dangling and pinned strings, respectively. Clearly, ¢, = dy, + pn,

dy = 2, and p; = 0, since the two balanced strings X and O of length 1 are both dangling.
We will show that d,+1 = 2pn + 4, pnt1 = d,, — 2. This implies that

dpi2 =2(dn —2)+4=2d, and ppi2=(2pn+4)—-2=2p,+2, so

tnt2 = dn+2 + Pnt2 = 2(dn +pn) +2=2t,+2 and tnpy2+2= 2(tn + 2)
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Thus from¢; + 2 = 4 we gett, + 2 = 2(=1/2. 4 ¢t = 2(n+3)/2 _ 9 for n odd; from
ty+2=6wegett, +2=2""2/2.6 ¢, =3.2"/2 _2forneven.

To get the recurrences above, consider extending a balanced string S by one symbol, to SX
or SO, so that the new string is still balanced. If S is a purely alternating string, XOXO - - -
or OXOX --- , then S is dangling, and S can be extended both to SX and SO. So the
two purely alternating strings of length n give rise to 4 dangling strings of length n + 1.
However, any other dangling string of length n can be extended in exactly one way, so the
d,, — 2 other dangling strings of length n yield d,, — 2 pinned strings of length n + 1. (If the
last double letter in the dangling string was X X, then the new letter must be an O, and vice
versa. Extending in this way will not “unbalance” the string, since it has alternated since
that last double letter. Thus if the new symbol O created a substring with A(Q) < -3,
we could truncate that substring before the last X X and show that the original string was
unbalanced.)

Conversely, by similar arguments, if S is a pinned string, then S can always be extended
both to SX and SO. (Note that if S ends in X, the last double letter in .S must be OO,
and vice versa, else S would not be pinned.) Thus the p,, pinned strings of length n give
rise to 2p,, dangling strings of length n + 1, for a total of d,, 1 = 4 + 2p,, along with the
Dn+1 = dn, — 2 pinned strings found previously, and we are done.

B-6 Let(ai,b),(az,bs),...,(an,by)be the vertices of a convex polygon which contains
the origin in its interior. Prove that there exist positive real numbers = and y such that

(a1,b1)z* Y + (az,b2)2%2Y" + -+ + (an, bn)z** 3" = (0,0).

Solution. Choose 7 > 0 so that the polygon contains the disk of radius r centered at the
origin. We first show that for every vector 7,

mtax{T’ (@, b))} > |||

Suppose this were false for a vector @ # 0. Note that the equation @ - ¥ = r||?||
defines the line perpendicular to 7 and tangent to the disk. Therefore, if @ - (a;,b;) <
|| 7||, the vertex (a;, b;) has to be to one side of that tangent line, and since not all the
vertices can be on the same side of the tangent line, we must have @ - (a;,b;) > 7 || 7|
for some 3.
Therefore, if we set f(z,y) = Z z%y% we have,
k3

f(z,y) 2 max {z%y"} = exp (m?X{(ln z, Iny) - (as, bz')}) > exp (r||(lnz, Iny)]]).

Therefore, as ||(Inz, Iny)|| — o0, f(z,y) — oo. For R > 0, therefore, f(z,y) >
f(1,1) whenever (, y) falls outside the square [R ™1, R]x[R™*, R]. The infimumof f(z,y)
over Rt x R* therefore equals the infimum over the closed and bounded set [R™*, R] x
[R™1, R]. As f(z,y) is continuous on this square, it actually achieves this infimum at some

. 0 1o} ) 0 0
point (zg,yo). But then a—i— = 55 = 0 at (zg,yo), from which w(_ﬁé = ya—;;— = 0;

equivalently,
a1z Y’ + - 4 anztyt = bz Yt + -+ bpz®rytt =0,

as desired.
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