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A RT IC LE S 

Are Individual Rights Possible? 
DONALD G. SAARI 

Northwestern University 
Evanston, IL 60208-2730 

1. Introduction 

What are your rights? Should you or should society determine whether you can wear a 
brown or blue shirt to class? Let's be more provocative: should you or should society 
decide whether you can read that raunchy article? The answers seem obvious-at 
least they did until a quarter of a century ago when A. Sen ([18], [19]) analyzed this 
question with an axiomatic formulation. His highly disturbing mathematical conclusion 
casts doubt on the rights of individuals to make even seemingly trivial decisions of this 
type. 

How can Sen's conclusion, which directly confronts our daily actions, be correct? As 
his proof is accurate, it is understandable that his disquieting assertion continues to 
concern experts from mathematics, economics, philosophy, and political science, 
among other areas. While the response has created a sizable literature, none of the 
papers provides a way out. Instead, the problem has become similar to a doll made of 
fresh tar; the more it is embraced, the greater the mess that is discovered. 

In this essay, a surprisingly elementary explanation of Sen's problem is offered. 
(See [16] for a complete description.) It only uses only the kind of introductoiy 
mathematics too many students try to skip due to persistent rumors that this "busy 
work" might convert brain matter into mushy oatmeal. Let me explain. 

Sen's assumptions In his theory, Sen assumes that society is confronted with k ? 3 
alternatives. Reflecting the sense that an individual has freedom of belief, Sen's first 
axiom is as follows: 

(U) Unrestricted domnain. Each individual can rank the alternatives in any desired 
transitive manner. 

Recall, an individual's ranking is transitive if it obeys the ordering properties of points 
on the line. For instance, if we prefer apple pie to blueberiy pie and blueberry pie to 
cherry pie, then surely we prefer apple pie to cherry pie; i.e., the rankings a >- b and 
b >- c (meaning a is preferred to b, and b is preferred to c) imply a >- c. As a voter 
with transitive preferences is called "rational," it is traditional to call a voter without 
transitive preferences "irrational." To avoid the nasty, pejorative ring of this term, I 
use the more tempered choices of "primitive" or "unsophisticated" voters. 

The second property is named after a nineteenth century mathematical physicist 
who probably made his most important contributions in the social sciences. 

(P) Pareto. If every individual prefers a >- b, then society prefers a >- b. 

This makes sense; (P) merely requires that, should everyone agree on the ranking of a 
particular pair, then that is society's ranking of the pair. 

83 
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The third condition, Sen's mninimal liberalismn, allows at least two individuals to 
make certain societal decisions. More precisely: 

(ML) Minimal Liberalism. There are at least two individuals who are decisive over 
different pairs of alternatives; the decisive voter's personal ranking for the 
assigned pair determines society's ranking of the pair. 

This condition captures "individual liberty": you, and only you, have the right to 
choose which shirt to wear to class. 

How can anyone argue against these natural, seemingly innocuous conditions? You 
might, once you discover that they can make it impossible for society to reach a 
decision. The problem, as explained next, is that (U), (P), and (ML) allow "cycles." 

The problem with cycles What are cycles? What problems do they cause? Can 
they occur in natural settings? To explain in more familiar terms, "Step a little closer 
because I am going to offer you a chance to become rich by playing a simple dice 
game. You mnay choose any one of the three dice. Only after you are absolutely sure of 
your choice will I select one of the remnaining two. Indeed, I am such a nice guy that, 
after a while, if you want my die you can have it. I will be happy to choose a different 
one. 

In this game, each of us rolls our selected die-high score wins. Instead of using 
standard dice, each die from our set carries three numbers, with each repeated twice: 
the markings are 

Die Numbers 

A W L6I 
B W3 [ F71 

W [ [2] 

Any two dice define nine combinations. For instance, the possible outcomes for the 
pair {A, B) are 

(8,3), (8,5), (8,7), 
(1,3), (1,5), (1,7), 
(6,3), (6,5), (6,7). 

The dice are fair in the sense that each face is equally likely to appear, so the better 
die is the one that wins the most pairwise matches. As die A wins everything in the 
top row and the first two in the last, it wins five out of the nine possible arrangements. 
Consequently, "A is better than B," which I denote by A >- B. A similar analysis 
shows that B >- C. Which die do you want? 

It is tempting to select A, but if you do you will make me rich, because C >- A. In 
other words, these dice generate the cycle A >- B, B >- C, C >- A, making it impossible 
to choose the "best" die. Whatever your selection, there is a die I can choose to beat 
you. I can even give you my die and select a different one to keep bleeding your 
wallet dry. (For other cyclic dice arrangements, see [4].) 

The trouble with cycles, then, is that they do not admit a maximal element. 
Whether in an amusing dice game or, more troubling, in society, cycles subvert the 
societal goal of making the "optimal" decision. A crucial objective of choice theory, 
therefore, is to avoid cyclic conclusions. 
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2. Sen's Examples 

In his seminal paper, Sen [18] constructs two examples where (P), (U), and (ML) 
force the troubling cycles. The first example has voters one and two decisive, 
respectively, over {a, b} and {b, c}. Table 1 identifies the binary rankings used by a 
ML-procedure for a particular profile. (A profile lists how each voter ranks the 
candidates.) The blanks in the table correspond to binary rankings that are irrelevant 
for a ML-procedure because some other voter is decisive. 

TABLE 1: Sen's first example 

Choice 
Voter {a, b} {b,c} {a, c} 

1 a>-b - c>a 
2 b >-c c>a 

Others c >- a 

To reconstruct the original profile, note that the blanks for voters one and two must 
be, respectively, c >- b (to assure that c >- a >- b) and b >- a (to assure that b >- c >- a). 
Choices for all other voters, who are unanimous in their {a, ci choice, come from 
c >- b >- a, c >- a >- b, or b >- c >- a. The cyclic societal outcome starts with a >- b (voter 
one is decisive over {a, b}), followed by b >- c (voter two is decisive over {b, c}), and 
completed with c >- a (by Pareto). This cyclic outcome makes it impossible for society 
to make decisions! 

It is easy to identify with this conflict. For instance, the two voters could be dorm 
roommates struggling over the use of a TV, where voter one is studious while voter 
two, well, enjoys life. Choices a, b, and c could represent, respectively, watching 
news, watching MTV, and turning the TV off. Our studious voter one prefers 
c >- a >- b while voter two prefers b >- c >- a, generating the stated conflict. (Sen [18] 
constructs an interesting censorship example.) 

A natural objection to this example is that the decisive voters' decisions involve the 
common alternative b. Could this explain the difficulty? Sen's second example 
sidesteps this criticism by assuming that voters one and two are decisive, respectively, 
over the distinct pairs {a, b} and {c, d}; his choice of transitive preferences for the 
voters defines the following table. Again, blanks correspond to binary rankings that are 
irrelevant for a ML procedure. Transitive preferences supporting this table could be 
where everyone but voter two has the ranking d >- a >- b >- c (so voter one's blank is 
filled with d >- c and "Others" are filled with a >- b, d >- c). Assign voter two the 
preferences b >- c >- d >- a to fill the blank with b >- a. Then, society's decision is 
a >- b (by voter one's rights), b >- c (by unanimity), c >- d (by voter two's rights), and 
d >- a (by unanimity); this creates another cycle and causes a potential societal 
deadlock. 

TABLE 2: Sen's second example 

Choice 
Voter {a, b} {b,c} {c, d} {a, d} 

1 a>-b b>c d>a 
2 b bc c>-d d>a 

Others b >- c d >- a 
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Before reading any further, the reader is invited to try to resolve this conflict, which 
is summarized in the next theorem. Remember, this is not a mere puzzle; it is a 
serious issue that has confused a generation of experts from several fields. The 
disturbing implications of Sen's assertion have motivated philosophical debates about 
the meaning of individual rights. 

THEOREM (SEN). With n ? 3 alternatives and at least two voters, no procedure can 
satisfy (U), (P), and (ML) and avoid cyclic outcomes. 

3. Resolution Through ",%Ignored",-, Mathematics 

Now that we understand Sen's problem, let's review the often "ignored" mathematics 
that offers relief for this quarter-century headache. It is where the student is asked to 
determine the domain for a function, say, f(x) = (X2 + 3x + 1)/[(x - 1)(x + 2)]. The 
answer, RM\{1, - 2), is all real numbers except for x = 1 and x = -2, which require 
dividing by zero. A related problem is to first specify a domain 2 and then 
characterize all functions of a particular type that are defined on 9. For instance, we 
may wish to determine all rational functions (quotients of polynomials) defined on 
[RM{, -2). Clearly, the denominator polynomial's real roots, if any, must be in 
the set {1, -2). For instance, (X2 + 1)/(x + 3) is not defined on RM\{1, -2, but 
(x2 + 1)/(x2 + 4) is. By specifying a domain we tacitly dismiss certain functions. 

This elementary notion suggests a way to examine Sen's conflict between individual 
rights and societal decisions: first determine the domain required by (ML) and then 
characterize all mappings (i.e., ways to make group decisions) defined on that domain. 
The range of each ML-mapping, of course, is society's rankings of the pairs. 

For simplicity, start with the preferences of Table 1. As voter one's {b, ci ranking is 
irrelevant for a ML-procedure, it could be c >- b (to satisfy transitivity), or even b >- c 
to make voter one cyclic. Thus, (ML) allows the possibility that, instead of being 
rational, voter one is primitive, with cyclic preferences! The same possibility holds for 
voter two: because (ML) ignores the missing {a, b) ranking, there is nothing to 
preclude voter two from having cyclic preferences. As a ML procedure only monitors 
the ranking of one pair for the remaining voters, it is irrelevant for the procedure 
whether the other two binary rankings define transitive or cyclic rankings. 

To describe the actual domain of a ML mapping, rather than the intended one, let 
B(3) be the set of all eight possible listings of strict rankings for the three pairs {a, b), 
{b, c}, {a, c); ties are not allowed. So, in addition to the six transitive ways to rank pairs 
(e.g., (a >- b, b >- c, a >- c) E B(3)), the set B(3) also includes voters with cyclic 
preferences (e.g., (a >- b, b >- c, c >- a)). As each voter's preferences come from B(3), 
the preferences for n voters is in the n-fold Cartesian product of B(3), denoted by 
B 1l (3). 

The next proposition states that an element of Bn(3) is a profile allowed by a 
ML-procedure; it lists the admissible ML-choices for each voter. A B"1(3) profile only 
requires a voter to rank each pair; voters need not sequence these pairwise rankings in 
a transitive manner. I leave it as an exercise for the reader to prove the following 
result. 

PROPOSITION. Suppose there are three alternatives {a, b, c) where voters one and 
two are decisive, respectively, over {a, b) and {b, c). A ML-procedure is defined on 
B n (3). 

A ML-procedure, then, can be used by primitive voters who cannot even sequence 
pairwise rankings. This fact allows us to identify the ML admissible procedures. 
Namely, just as the domain - \{1, -2) excludes (X2 ? 1)/(x ? 3) as an admissible 
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function, we will find that the Bn(3) domain for ML-methods immediately dismisses 
most of the commonly used procedures. 

To illustrate, consider the Borda Count (see [3, 14] for more details), which tallies 
each voter's ballot by assigning two, one, and zero points, respectively, to the voter's 
first, second, and third ranked candidates. The candidates are then ranked according 
to the sum of assigned points. While the Borda Count is trivial to use with transitive 
preferences, it is not a ML-procedure because it cannot be used (in this form) by a 
voter with the cyclic preferences a >- b, b >- c, c >- a. After all, how many points 
should be assigned to a? Similarly, the widely used plurality vote, where we vote for 
our top-ranked candidate, is dismissed by (ML) simply because every voter must have 
a top-ranked candidate. More generally, an unintended (ML) consequence is to 
exclude all procedures that can deal only with rational voters! (The domain for such a 
procedure is a proper subset of B n(3) rather than the full set.) What remains are only 
those procedures acceptable to primitive societies. 

This point is important. Understanding the true domain generated by Sen's axioms 
makes the source of his problem transparent. To use an analogy, recall the standard 
puzzle involving nine dots arranged in a square: 

The goal is to draw-without lifting the pencil-four straight line segments that pass 
through all nine points. As long as we believe that the line segments must lie inside 
the square, this task is impossible. But once we recognize the true domain for the 
problem (the endpoints of the line segments may lie outside of the square), resolu- 
tions are easy to find. Similarly, as long as we believe that the ML-domain requires 
transitive preferences and that we are considering commonly used methods, Sen's 
assertion is difficult-probably impossible-to resolve in a simple manner. But once 
we discover that the true ML-domain includes cyclic preferences and that ML-proce- 
dures ignore transitivity, Sen's conclusions become reasonable. After all, if transitivity 
is not relevant to the input, why should we expect it in the output? 

4. A Reinterpretation of Sen 

Thus, the desirable, seemingly innocuous condition of minimal liberalism admits only 
procedures acceptable to "unsophisticated societies." But doesn't axiom (U), which 
explicitly requires voters to have transitive preferences, retrieve the orderly setting of 
rational voters? Maybe there is a ML-mapping which becomes sufficiently sophisti- 
cated (by avoiding cyclic outcomes) when restricted to transitive preferences? Clearly, 
such a procedure must be able to differentiate between a sophisticated (transitive 
preferences) and a primitive (cyclic) society. 

To address this issue, notice that a ML-procedure ranks each pair of candidates. As 
some of the rankings may be ties, extend B(3) by including the ties and denote the 
new set by B(3). For instance, (a >- b, b c, c >- a) is not in B(3) because of the 
b c ranking, but it is in B (3). With this notation, a ML-procedure becomes a 
mapping 

F: B 1(3) -> B(3). 

Axiom (U) restricts the admissible profiles. Namely, if T(3) c B(3) represents the 
transitive preferences, then (U) restricts the ML-procedures'to 
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To determine whether (U) allows any ML-procedure to avoid cyclic outcomes, we 
need to identify all ML-mappings that satisfy (P) and have at least the property: 

F: T'(3) -* B(3)\18{(a >- b, b >- c, c >- a), (b >- a, c >- b, a>- c)}. 

To analyze the effect of this (U) restriction, notice that because there are more 
profiles in B"1(3) than admissible outcomes, each mapping is many-to-one-all 
profiles in each level set generate the same societal ranking. 

DEFINITION. Two profiles Pi, P2 E B 1(3) are ML-equivalent, denoted by Pi -ML P2, 
if differences in voters' binary rankings occur only for voter one in the {b, c} ranking, 
for voter two in the {a, b} ranking, and for any other voters in the {a, b} and/or {b, c} 
rankings. 

Two profiles, then, are equivalent if and only if a ML-procedure cannot distinguish 
between them. Clearly, ML is an equivalence relation partitioning the domain B 1(3) 
into equivalence classes. To prove the following theorem, which asserts that each 
equivalence class has an entry in Trl(3), the reader can mimic what was done with 
Table 1 by filling in blanks to create transitive and cyclic preferences. 

THEOREM 2. The equivalence classes defined by -ML partition B l(3). Each 
equivalence class has 4"1 profiles; at least one of these profiles has all transitive 
voters and at least one other profile has all cyclic voters. 

As each equivalence class contains a transitive profile, the (U) constraint does not 
eliminate any equivalence class from the domain. But as the outcome of a ML 
admissible procedure is strictly determined by the equivalence class (the procedure 
cannot distinguish between profiles in the same class), a ML-method cannot detect 
any change in the domain. Thus, the (U) restriction is useless because it makes no 
difference for a ML-procedure; the image of F restricted to T"1(3) is the same as that 
of F on B'"(3). Stated more simply, because a ML-procedure must service unsophisti- 
cated voters, we cannot expect it to recognize rational preferences. 

Armed with this knowledge, we can easily construct Sen-type examples. For 
instance, start with the cyclic profile pc where everyone has the rankings b >- a, c >- b, 
a >- c. According to unanimity condition (P), the only fair societal ranking is this cycle. 
But Theorem 2 ensures there are transitive profiles -that are ML-indistinguishable 
from pc; both profiles have the same cyclic outcome. To construct one of these 
transitive profiles, first list the pc binary rankings recognized by a ML method. 

Choice 
Voter {a, b} {b, c} {a, c} 

1 b >-a a c 
2 c >- b a c 

Others a >- c 

Next, find an indistinguishable transitive profile by appropriately filling in the blanks. 
Notice, the entries of this table are identical to Table 1. Consequently, one choice of a 
transitive profile is where voter one has preferences b >- a >- c while all other voters 
have the preferences a >- c >- b. Both the cyclic and the transitive profiles provide 
identical information for ML-procedures. 

Theorem 2 describes the situation with k = 3 candidates. Extensions to larger k 
values follow in much the same way. To find the ML-domain, start with Trl(k), the set 
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of k-candidate, binary, transitive rankings for n voters. For each pair assigned to a 
decisive voter, alter the other voters' binary ranking in all possible ways to define the 
actual (rather than the intended) domain for ML-procedures. The rest of the proof of 
an extension of Theorem 2 follows in the same manner. 

Once k exceeds 3, the added number of pairs allows for highly imaginative 
situations. For instance, Salles [17] develops a clever setting for k = 4 where, by 
appealing to the arguments of Hammond [8], Salles constructs a natural setting where 
each of two voters is decisive over two pairs. He then finds a transitive profile that 
generates two different cycles! The reader may wish to construct other examples to 
illustrate the even more bizarre behavior that is possible if k ? 5. (Start with primitive 
voter profiles where the outcome is obvious; then replace the original profile with a 
ML-indistinguishable transitive profile.) In all settings, the cycles are "fair" outcomes 
for a "primitive" profile that is ML-indistinguishable from the constructed transitive 
profile. 

5. Arrow's Theorem 

The subtle cause of Sen's problem explains all sorts of complexities in our daily life. 
To illustrate, suppose an organization is to elect Ann, Becky, or Claire as their new 
Chair, where the voters have the following rankings: 

Number Preferences 

31 A >- C >- B 
30 B >- C >-A 
3 C >- B >-A 

The plurality outcome, where a voter votes for his top-ranked candidate, is A >- B >- C, 
with the tally 31: 30: 3. Our familiarity with this commonly used system makes it easy 
to misinterpret the result. For instance, it seems obvious from Claire's poor showing 
that these voters strongly prefer Ann to Claire. They do not; their pairwise ranking is 
C >- A, with a 33: 31 tally! Indeed, in continued defiance of the plurality outcome, 
these voters also prefer C to B and B to A! 

This example underscores a serious flaw of the plurality vote; it recognizes only a 
voter's top-ranked candidate. Totally dismissed is any information about a voter's 
relative ranking of each pair. Once this lost information is reclaimed, we discover that 
most voters prefer Claire to either alternative. This suggests replacing the plurality 
method with procedures that utilize this valuable data coming from pairwise compar- 
isons. Maybe a reform procedure should satisfy the following axiom: 

(IIA) Independence of Irrelevant Alternatives. Society's relative ranking of a pair is 
determined only by the voters' relative ranking of this pair. 

It may seem easy to find many such reasonable procedures, but only one exists. This is 
the content of "Arrow's Impossibility Theorem," one of the most widely-quoted 
results in the social sciences. 

THEOREM (ARROW [1]). Suppose there are at least three candidates, at least two 
voters, and that all voters have transitive preferences. If a procedure satisfies (U), (P), 
and (IIA), and always has transitive outcomes, then one of the voters is a "dictator" 
(societal outcome always agrees with the dictator's preferences). 
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It is not uncommon to find Draconian interpretations of this important assertion, 
descriptions that exploit the fearful image of dictatorships. Such interpretations are 
irresponsible: the theorem states only that it is impossible to invent a procedure where 
the pairwise and general rankings always agree. The real issue is to understand why. 

The problem can be addressed in the same manner used to analyze Sen's assertion: 
first find the domain for the functions satisfying (IIA), and then find the procedures 
admitted by this domain. The explanation (see [12, 14, 16] for more details) is that, 
unintentionally, (IIA) dismisses all information reflecting the crucial assumption that 
the voters are rational! For intuition why this is so, suppose in the earlier "apple, 
blueberry, and cherry pie" illustration, we learn that a person prefers b to a. Does 
this person have cyclic or transitive preferences? Such a question is impossible to 
answer because transitivity involves the sequencing of all pairs. Axiom (IIA), however, 
specifically requires a procedure to consider only each voter's relative ranking of each 
pair. Consequently, (IIA) dismisses all sequencing information concerning the 
rationality of voters. As true with Sen's theorem, if a procedure devalues information 
about the rationality of inputs, we cannot expect rationality in the conclusions. 

While a result paralleling Theorem 2 is more difficult to prove, it asserts that a 
IIA-procedure admits indistinguishable transitive and non-transitive profiles. As in 
Section 4, this assertion follows by determining whether (U) allows some procedure to 
distinguish between transitive and primitive preferences. This means that when the 
pairwise parts from transitive preferences are separated, the procedure can recon- 
struct them only in a transitive manner. Here we have a positive answer; if a 
procedure pays attention only to the preferences of one voter-the dictator-this 
always happens. However, once the preferences of least two voters are needed, no 
procedure can distinguish between the transitive and non-transitive rankings. Again, if 
a procedure does not recognize whether the inputs are rational, we cannot expect 
transitive outputs. Moreover, the non-transitive outcome of a procedure can be 
interpreted as "fairly" representing the nonexistent profile of voters with cyclic 
preferences. 

Let me illustrate this unexpected assertion with the pairwise vote. It is easy to show 
that the pairwise vote satisfies (U), (IIA), and (P), and its outcomes cannot be 
determined by a dictator. Therefore, we know from Arrow's Theorem that not all of 
the outcomes are transitive. To create an example, consider the three-voter Condorcet 
profile (the subscripts on the pairwise rankings will be explained later): 

Preferences {a, b} ranking {b, ci ranking {a, ci ranking 

a >-b >-c (a >-b), (b >-c)2 (a >-c)3 
b >-c >-a (b >-a)3 (b >-c), (c >-a)2 
c>-a>-b (a>-b)2 (c>-b)3 (c>-a), 
Outcome a >- b b >- c c >- a 

In this table, each voter is assigned a row; the voter's preferences are in the left 
column. The other entries of the row specify the voter's relative ranking for each pair 
of candidates. By listing these pairwise rankings in columns identified with the pairs, 
each pair's majority vote tally is determined by the number of times a candidate is 
preferred in the three entries of the appropriate column. This defines cyclic pairwise 
election outcomes a >- b, b >- c, c >- a, where the tally for each election is 2: 1. 

To justify my assertion about Arrow's Theorem, I must display a cyclic profile which 
the pairwise vote finds indistinguishable from the Condorcet profile and where the 
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cyclic outcome is "fair." To do so, notice that the pairwise vote respects anonymity; it 
cannot determine who cast what vote. So, by permuting the three entries of each 
column in any manner, I define other profiles that the pairwise vote finds indistin- 
guishable from the Condorcet profile. In particular, the pairwise voting procedure 
cannot distinguish the Condorcet profile from the primitive voter profile where the 
preferences of voter j are identified by the subscript j. 

Consequently, as far as the pairwise vote is concerned, the "true" profile could be 
where primitive voters one and two have the cyclic preferences d = {a >- b, b >- c, 
c >- a) while primitive voter three has the reversed cyclic preferences Vc = {b >- a, 
c >- b, a >- c}. This possibility defines a single-issue situation where two voters believe 
in v while the last voter disagrees. The only "fair" outcome for this reconstructed 
profile is v by a 2: 1 vote-it is the cycle. This "fair outcome" must hold for all 
profiles constructed from these binary rankings. (For more details, see [12, 14].) 

This example not only illustrates how (IIA) vitiates the critical assumption that 
voters have transitive preferences, but also raises doubts about any procedure based 
on pairwise rankings. After all, if the restricted information used by the pairwise vote 
drops the assumption that voters are transitive, then why should we expect rational 
outcomes? This concern extends to all procedures using the pairwise vote, such as 
tournaments or even an agenda for a meeting which specifies an order to sequentially 
vote upon pairs of alternatives. 

Armed with this insight, the reader can identify other examples, coming from 
choice theory, economics, and elsewhere, from which we should expect disturbing 
outcomes. The true message is to expect trouble whenever the actual (rather than 
intended) domain for a procedure admits nontransitive preferences. 

6. Resolutions 

By understanding the source of Sen's and Arrow's results, we can not only entertain 
hope for resolutions, but also understand why certain approaches have failed-miser- 
ably. For instance, a widely used approach in choice theory is to further restrict the 
profiles. This approach, however, misses the point. While stronger profile restrictions 
may circumvent Sen's, Arrow's, and related problems, they fail to provide interesting 
answers. This is because the admitted procedures are appalling to the standards of 
democracy. (This is illustrated by the quasi-dictatorial, highly stilted procedures 
required by the results in [7, 9, 10, 11, 14].) Remember, the real damage is caused 
because (ML) and (IIA) exclude reasonable procedures while retaining only those that 
are crude enough to be used by primitive societies. But when restricted to crude 
procedures, we cannot expect sophisticated outcomes. If our building tools are limited 
to sticks and stones, don't expect to construct a modern 100-story skyscraper. 

A realistic resolution is more challenging and constructive. As we discovered, 
axioms exclude procedures. In particular, we learned from Sen's and Arrow's choices 
of (ML) and (IIA) that even appealing axioms can be useless if they exclude 
reasonable procedures. We need, then, to achieve a balance between the choice of the 
axioms used to model a desired situation and the kinds of procedures they admit. 

As this explanation of Arrow's and Sen's theorems provides new tools and directions 
to resolve Arrow's and Sen's concerns, I encourage the reader to explore these issues. 
To do so, remember that the cost of separately determining societal rankings for 
subsets of alternatives is to, inadvertently, admit non-transitive preferences. Thus, new 
axioms should promote connections among these sets. For instance, instead of 
examining only the pairwise rankings, maybe we should sum the tallies of each 
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candidate over all pairwise elections. (See [12, 13, 14].) This change sufficiently 
relaxes Arrow's (IIA) condition to admit reasonable procedures such as the Borda 
Count. (While this procedure allows the cyclic voter to cast ballots, I leave it to the 
reader to show that this version of the Borda Count effectively discards these ballots 
as they amount to a complete tie.) 

An alternative direction is to recognize that Sen's axiom (ML) separates the 
decisions for certain pairs, while (P) insists on connections. By correcting this 
incompatibility, resolutions follow. For instance, if society grants me the right to 
choose my shirt, why are others comparing one of my alternatives with other 
alternatives? This suggests relaxing (P) to the following axiom: 
(P*) Relaxed Pareto. If an individual is given decisive rights over a pair {a, b}, then 

the Pareto condition (P) does not apply to any pair including either a or b. 
It is easy to construct procedures satisfying (p*), (ML), and (U) where the 

outcomes are transitive. Rather than proposing procedures, I advance this axiom to 
illustrate how to use this new structure to generate resolutions. 
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If someone mentions irrational number, what do you think of? Perhaps you recall a 
standard example, F2, and a proof by contradiction that has to do with odd and even 
numbers. Or perhaps what comes to mind is that the Pythagoreans were discomfitted 
by the irrationality of v' because it proved that not all geometric relationships could 
be described in terms of whole numbers. In this paper we will touch on both of these 
aspects of irrationality, recounting a bit of the history, and showing some variations on 
the traditional approaches to these topics. Although the subject is a familiar one, it is 
rich in interesting ideas. The purpose of this paper is to popularize some irrational 
ideas that do not appear to be well known, including connections to eigenvalues and 
dynamical systems, and to bring them together with some of the ideas that are so 
familiar. 

Incommensurability and Infinite Descent 

The Pythagoreans encountered the idea of irrationality in geometry in the context of 
commensurability. Initially, in harmony with their all is number doctrine, they 
embraced the geometric position that any two segments are commensurable, meaning, 
exactly measurable with a common unit. In modern terms, that would mean that 
relative to an arbitrary unit of measurement, every segment has rational length. Of 
course that is false, and the very notion seems quaint to our ears. But it was an 
unexpected discovery to the Greeks, and had fundamental mathematical and philo- 
sophical ramifications. According to one oft-repeated account, the demonstration of 
the existence of incommensurable segments was so devastating that the bearer of the 
bad news was put to death for his discovery.1 

To understand the importance of commensurability to the Pythagoreans, one must 
bear in mind their reliance on whole number relationships. In particular, the concept 
of proportion was formulated in integral terms: the fundamental observation is that 
a: b and na: nb are in equal proportion. Then clearly ma: mb and na: nb are also 
equal. In geometry, with the quantities ma and na representing line segments, the 
common divisor a becomes a common unit of measurement. 

'As retold by Choike [4], the discoverer, Hippasus of Metapontuim, was on a voyage at the time, and his 
fellows cast him overboard. A more restrained discussion by Boyer [2, pp. 71-72] describes both the 
discovery by Hippasus and his execution by drowning as mere possibilities. 

This content downloaded from 128.235.251.160 on Sat, 6 Dec 2014 01:25:57 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


94 MATHEMATICS MAGAZINE 

Proportionality of Similar Triangles As a concrete example of this idea, we will 
derive the proportionality of the corresponding parts of similar triangles, following the 
approach of Aaboe [1, pp. 42-43]. Let ABC and A'B'C' be triangles whose 
corresponding angles are equal, and suppose that BC and B'C' are measured by the 
common unit a. Then for some integers n and in, BC = ma and B'C' = na, as 
illustrated in FIGURE 1. 

A 

A 

B a a a a a a a C B' a a a a a a C' 

FIGURE 1 
Triangles with commensurable bases 

Focusing on ABC for a moment, observe that the subdivision of BC into m equal 
segments permits us also to subdivide AC into in equal segments: simply construct 
parallel lines as shown in FIGURE 2. 

A 

B C 
FIGURE 2 

Subdividing AC 

A 

B C 

FIGURE 3 
Parallelograms 

A 

mc nib 

B ma c 

FIGURE 4 
ABC Tiled 

The intersections of these parallel lines with AC are equally spaced along that side. 
This can be seen by constructing line segments parallel to BC as in FIGURE 3. Each 
segment has length a, because it completes a parallelogram with base of length a 
along BC. That makes the triangles lying along AC congruent, and so verifies that 
their sides on AC are all of equal length, say b. 

And now with two sides of the triangle subdivided, we can partition the remaining 
side into m equal parts of length c in two ways, using lines parallel to either AC or 
BC. The result is actually a tiling of ABC by congruent triangles, with m tiles along 
each side (FIGURE 4). In each tile, the sides are a, b, and c. Thus AB = mc and 
AC =mb. 
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The same construction carried out in A'B'C' results in a tiling with n copies of the 
tile along each side (FIGURE 5). Moreover, the tiles used in each triangle are congruent. 
By construction they clearly share equal corresponding angles, as well as one side, a. 
This leads to A'B' = nc and A'C' = nb, and proves that the sides of the triangles are 
in equal proportion. For example, BC: B'C' = ma: na = mb: nb = AC: A'C'. 

A 

A' 

B C B' C' 

FIGURE 5 
Tiled Triangles 

If it is assumed that all pairs of segments are commensurable, this argument 
establishes the proportionality of similar triangles. More generally, the presumption of 
commensurability justifies treating all proportions as ratios of integers. The discovery 
of incommensurable segments revealed a fundamental flaw in this approach to 
proportionality, and led ultimately to the much more sophisticated formulation that 
appears in Book V of Euclid. 

Infinite Descent No one really knows how incommensurability was first discov- 
ered. In [4], there is a retelling of the suggestion of von Fritz [9] that the pentagram 
was the first geometric figure shown to have incommensurable parts. The argument 
given there uses the idea of infinite descent. Starting with an initial figure, we 
construct another similar figure that is demonstrably smaller in size. Two parts of the 
original figure are assumed to be measurable with a common unit, and then it is 
shown that this same unit must measure the corresponding parts of the smaller figure. 
By repeating the construction, we can eventually reduce the figure so far that the 
diameter is less than the common unit, whereupon we contradict the fact that this unit 
must measure two sides of the figure. In [4] this argument is made using a pentagram. 
Here we will give a somewhat simpler construction starting with an isosceles right 
triangle. An essentially equivalent construction, working in a square, is presented 
in [3]. 

Consider FIGURE 6, showing an isosceles right triangle ABC. The point D has been 
constructed so that BD = BC. Through D we draw a line parallel to leg AC, wlhich 
meets BC at point E. Now construct a square having CE as one side (see FIGURE 7), 
thus defining points F and G. 

For reference, we have drawn the auxiliary lines CG and CD in FIGURE 8. Observe 
now that CG and GD have equal length. Indeed, with BC and BD equal (by the 
construction of D), we know that angles DCB and CDB are equal. Also angles GCE 
and GDB are equal (and each is half a right angle). Thus, triangle CDG is isosceles, 
with CG and GD equal, as asserted. To complete the construction, add point H to 
define a parallelogram ADGH (FIGURE 9). Then triangles FGH and FGC are 
congruent, so that CG and GH are equal. Combined with the earlier result, this 
shows that all sides of parallelogram ADGH are equal to CG. 
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D 

I\ 
C E B 

FIGURE 6 
Isosceles right triangle 

A 

D 

F G 

C E B 
FIGURE 7 

CEGF is a square 

A 

D 

F G 

C E B 
FIGURE 8 

Triangles BCD and GCD are isosceles 

A 

D 

H 

F G 

C E B 

FIGURE 9 
ADGH is a parallelogram 

To summarize the result of the construction, FIGURE 10 shows the essential 
segments, with AH, AD, HG, and GC all equal in length. Triangle CGH is an 
isosceles right triangle. If a unit evenly measures BC and AB, then it must also 
measure their difference, AD. The unit therefore measures legs HG and CG of 
CGH. Furthermore, since the unit measures both AC and AH, it measures their 
difference, CH, the hypotenuse of CGH. Therefore, any unit that measures the parts 

A 

D 

H 

G 

C 
X B 

FIGURE 10 
A unit measuring AB and BC also measures CG and CH 
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of triangle ABC must also measure the parts of the smaller similar triangle CGH. 
This completes the construction. The incommensurability of AB and BC now follows 
as discussed earlier. 

The incommensurability argument also leads to an algebraic demonstration of the 
irrationality of l. Assume that there is a unit that divides evenly into the leg and the 
hypotenuse of the original triangle, say with n units along AB and m on BC. Then 
AD must be measured by n -m units, as must AH, GH, and GC. Furthermore, HC 
is then measured by m - (n - m) = 2m - n units. Since CHG and ABC are similar 
triangles, we conclude that n/m = (2m - n)/(n - m). This same conclusion can be 
reached using algebra. Suppose that a and b satisfy a2 = 2b2. Then a2 - ab = 2b2 2 

ab hence a(a - b) = b(2b - a). This leads to our earlier conclusion: a/b = 

(2b - a)/(a - b). Now since b < a, we see that 2b - a < a. Since a < 2b, a - b < b. 
That is, the numerator and denominator of (2b - a)/(a - b) are each less than the 
corresponding parts of a/b. The conclusion is summarized as follows: Any ratio a/b 
representing v1 leads to another ratio with strictly smaller numerator and denomina- 
tor. If a and b are integers, so are 2b - a and a - b. Thus, given any integer ratio for 
V we obtain an equal ratio of strictly smaller integers. This is clearly an impossible 
situation, so r must have no such representation. 

The preceding argument appears in [10, pp. 39-41]. It is essentially the same as 
one used by Fermat to argue the irrationality of r3 (see [2, pp. 353-354]). Fermat 
went on to make great use of the notion of infinite descent in number theory. In 
contrast, our discourse now heads in a different direction-to the use of matrices. 

A Dynamical View of Irrationality 

One facet that both the algebraic and geometric infinite descent arguments share is 
the propagation of pairs (a, b). Indeed, the generation of each new pair from its 
predecessor is of a linear nature. It is natural therefore to represent it as a matrix 
operation. Let A be the matrix [ _, and represent the pair (a, b) as a column 
vector. Then 

[1 -l[b2 a -b -] 

describes the propagation used in our earlier arguments. Now we make two observa- 
tions about A. First, as an integer matrix, it preserves lattice points. That is, if v is a 
vector with integer components, then so is Av. Second, the line L described by 
a = J2ib is an eigenspace, so its points are also preserved by A. Actually we can say 
more: A is a contraction on L. Simply obseive that 

-1 2 V-2 [2 - [V2( -V2 ( V2 -1I r2 

Since the eigenvalue V2 - 1 is between 0 and 1, the effect of A on points of L is to 
reduce their magnitude. 

The infinite descent argument can now be stated in dynamical terms. Starting with 
any first quadrant point (a, b) on L, repeated application of A generates a sequence 
of points that remain on the line while converging to 0. If the initial point were a 
lattice point, all of the successive points would be as well, leading us to the impossible 
situation of an infinite sequence of distinct lattice points converging to the origin. We 
conclude that there are no lattice points on L. 
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Dynamics of A and A'- There is a bigger dynamical picture. Although there are 
no lattice points on L, there are plenty elsewhere in the plane. Repeated application 
of A to each must generate a sequence of lattice points, called an orbit. Where do 
these orbits lead? It is easy to show that A has another eigenvalue with magnitude 
greater than 1, and a corresponding line M of eigenvectors. Each element of the 
plane can be expressed as a sum of elements of L and M. Under repeated application 
of A, the L component dwindles away to nothing, while the M component grows 
without bound. Therefore, almost all of the points in the plane, including every one of 
the lattice points, march off to infinity under the action of A. This is the dynamical 
systems view of A. Its repeated application to the plane sweeps everything not on L 
out to infinity along M, while the points on L all flow toward the origin. In 
combination with the fact that A preserves integer lattice points, this shows that L 
can contain no lattice points other than 0. 

Somewhat paradoxically, although the dynamic description is given in very geomet- 
ric terms, it is not easy to depict accurately on a graph. For one thing, the eigenvalue 
corresponding to M is negative. As A is repeatedly applied to a vector, the M 
component alternates in sign. The resulting orbit jumps back and forth, progressing in 
one direction along M on the even jumps, and in the opposite direction on the odd 
jumps. So "marching to infinity" is not really the right image. Rather, the points 
leap-frog infinitely far along M in both directions. Looking just at the landing points 
of the even leaps, the points seem to follow a flow, as illustrated qualitatively in 
FIGURE 11. This really shows the dynamic behavior of A2. It gives some sense of the 
dynamics of A, as long as you remember what is happening on the odd leaps. 

FIGURE 11 
Dynamics of A 

The magnitude of the negative eigenvalue presents another obstacle to forming an 
accurate graphical representation of the dynamics of A. Except for points very close 
to L, the M component grows so rapidly that the L component becomes completely 
invisible after only one or two iterations. That is, if the scale is made large enough to 
show an initial point and two iterates, relative to that scale, even the initial L 
component will be hard to see. This effect is illustrated in FIGURE 12, which shows a 
square, and its images under A and A2. The second image is hard to distinguish from 
a heavily inked line. Careful inspection reveals the effects of the negative eigenvalue, 
as the labeled vertices alternate orientation around the square and its successive 
images. However, with only two applications of A illustrated, there is not much of a 
basis for visualizing the overall structure of the orbits. In fact, the situation is more 
easily described than drawn. From just about any starting point, the orbit takes only a 
step or two to get right next to M. From that point on, the orbit jumps off to infinity, 
alternating between one end of M and the other. 
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FIGURE 12 
Applications of A to a square S 

As stated earlier, A carries each lattice point to another lattice point. As a matter of 
fact, the set of lattice points is actually invariant under A, because the inverse [ 1 

also has integer entries. The dynamics of A-1 are the reverse of those of A: all the 
points off M are swept out to infinity along L, while points on M collapse into the 
origin. Reasoning exactly as before, M can contain no lattice points. Therefore, under 
the action of A-1, every lattice point generates a sequence that asymptoticall 
approaches L. This provides a simple way to generate rational approximations to 2. 

Begin with a lattice point [b and repeatedly apply A Since the resulting sequence 
of points a,, approaches L, the ratios a/b, converge to IL For example, starting 

with [ ]we generate the sequence 

[?] [1] [2] [5] [12] 
E411 [99] [2391 [577] [13931 
-29] L70] [169] L408] [ 985] 

[ 33631 r 81191 [196011 r473211 r 114243] 
L2378] [5741] L 13860] [33461] [ 80782] 

The last pair shown approximates v as 114243/80782. Squaring the numerator 
and denominator we find that 1142432 = 13051463049 = 13051463048 + 1 = 2 
807822 + 1 so the ratio is indeed very close to v'?. This same sequence of rational 
approximations was presented in [10, pp. 39-41], derived by an approach closely 
related to ours, but without using matrices. The sequence also appears in [8]. There, a 
quite different (and very interesting) scheme is used to find rational approximations 
to V. 
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Generalizations 

The foregoing matrix approach can be generalized in several ways. First we will 
consider square roots of integers other than 2. Then we will look at the more general 
case of rational roots of polynomials with coefficients that are either integers, or 
Gaussian integers. Finally, we generalize from roots (which correspond to linear 
factors) to the more general question of factorization, as described by Gauss's Lemma. 

To begin, let us see how the preceding dynamical discussion of the irrationality of V2 
generalizes to F. In place of A take the matrix [ k1 -k , and everything works as 

before. One eigenvalue is F - k and the corresponding line L of eigenvectors is 

spanned by [ ' j. The other eigenvalue is - (k + xnH) with the corresponding line M 

spanned by [v]. In order to obtain the same dynamic behavior as before, we 

require the first eigenvalue to have magnitude less than 1. We can achieve this by 
taking k to be the greatest integer in F. In the special case that n is a perfect 
square, this results in an eigenvalue of 0. Then there are lattice points on the line L, 
but they are all mapped by A to 0 in a single jump. In any other case, that is, if n is 
not a perfect square, we see that there are no lattice points on L, and deduce that F 
is irrational, as before. We have therefore shown that an integer is either a perfect 
square or has an irrational square root. 

One way to view the choice of k in the preceding is as follows: we have a matrix 
with an eigenvalue that may be larger than 1. By subtracting an integer multiple of the 
identity matrix, we can translate the eigenvalues to obtain a positive eigenvalue less 
than 1. This idea leads to a proof of the well known, more general result that a monic 
polynomial with integer coefficients has real roots that are either integers or irrational. 
Before proving this result, we need two lemmas. The first allows us to treat a general 
polynomial in the context of matrix algebra, while the second assures us the equivalent 
of lattice points as eigenvectors. 

LEMMA 1. Every monic polynomial with integer coefficients is the characteristic 
polynomial of an integer matrix. 

Proof. The proof is constructive. If the polynomial is p(x) = x " + c x 
+ +c0 then it is the characteristic polynomial of the so-called companion matrix 
(see [5], for instance). 

0 1 0 0. 0 
O 0 1 0. 0 

o o 0 1. 
-c -_c - _2 .c.. _ 2 

O 1 ,-1 

It is easy to verify that this matrix has the desired characteristic polynomial 
by expanding the determinant of (C -Al) in the first column and using in- 
duction. Additional insight comes from observing that if a is a root of p, then 
[1 a a 2 .. a n-I ]T is an eigenvector of C with eigenvalue a. This fact is easily 
verified by a direct calculation. 

LEMMA 2. Let A be an integer matrix with rational eigenvalue A. Then there exists 
an integer eigenvector u. 
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Proof: The matrix A - AI has determinant 0. Therefore, over the field of rationals, 
it has a nontrivial null space. A nonzero vector in that null space has rational entries, 
and so a suitable integer multiple will have integer entries. The result is an integer 
eigenvector u for A and A. 

We state the generalization of the argument concerning F as follows: 

THEOREM 1. A real eigenvalue of ant integer matrix is either an integer or irrational. 

Proof: Proceed by contradiction. Let A be a rational eigenvalue of the integer 
matrix A, and assume that A is not an integer. Without loss, we may assume that 
0 < A < 1, for if not, simply replace A with A - LAI I. (L I is the greatest-integer 
function.) The second lemma shows that there is an integer eigenvector u correspond- 
ing to A. If we apply A to u repeatedly, we generate an infinite sequence of distinct 
integer vectors that converges to 0. This is clearly impossible. Therefore, every 
rational eigenvalue of A must actually be an integer. 

Complex Roots Combined with the first lemma, Theorem 1 shows that for a monic 
polynomial with integer coefficients any real roots are either integer or irrational. 
What about the complex roots? To simplify the discussion of the complex case, it will 
help to use the notation Z for the integers, and Z[i] for the Gaussian integers, that is, 
complex numbers with real and imaginary parts in Z. Similarly, we will denote by Q 
the rational numbers, and, by P[i], the complex numbers with rational real and 
imaginary parts. Now let us return to the question of complex roots. If a monic 
polynomial with integer coefficients has a root in Q[i], must that root actually lie in 
Z[i]? The answer is yes, and the argument is essentially the same as what has gone 
before. Instead of matrices with entries in Z, we consider matrices whose entries are 
in Z[i]. It is easy to modify the lemmas given earlier to apply to this new situation. 
First show that every monic polynomial with coefficients in Z[i] is the characteristic 
polynomial of a matrix with entries in Z[i]. Then show that when such a matrix has an 
eigenvalue in 0[i], it has an eigenvector with entries in Z[i], as well. Finally, prove 
that for a Gaussian integer matrix, an eigenvalue in Q[i] must actually be in Z[i]. As 
before, it may be assumed without loss of generality that the eigenvalue has magni- 
tude less than 1, this time translating by the nearest Gaussian integer, if necessary. 
The argument concludes just as before. 

Gauss's Lemma All the foregoing results about roots of polynomials can evidently 
be formulated in terms of linear factors, instead. Thus, if a monic polynomial with 
integer coefficients has a linear monic factor with a rational constant term, it is 
actually an integer constant term. This is a special case of a more general result known 
as Gauss's Lemma: If f(x) is a monic polynomial with integer coefficients which 
factors as g(x)h(x), where g and h are monic polynomials with rational coefficients, 
then in fact g and h have integer coefficients. The proof that is usually given for this 
result makes use of unique factorization. Here, using matrix methods, we can give an 
alternate proof that does not explicitly depend on unique factorization. 

The proof is formulated in terms of algebraic integers: complex roots of monic 
polynomials with integer coefficients. Our preceding results say that an algebraic 
integer in Q must be in Z, and an algebraic integer in 0[i] must be in Z[i]. The first 
of these results can be applied to prove Gauss's lemma, once we show that the 
algebraic integers are closed under addition and multiplication. The idea will be to 
show that the coefficients of factors g and h are algebraic integers since they are 
combinations of the roots. That will make the coefficients rational algebraic integers, 
and hence integers. 
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In addition to its role in the earlier lemmas and results, matrix algebra also provides 
a convenient means to establish that the algebraic integers are closed under addition 
and multiplication. It is clear from Lemma 1 that algebraic integers can be character- 
ized as eigenvalues of matrices with integer entries. To deal with sums and products of 
these eigenvalues, a useful matrix operation is the tensor product, also called the 
Kronecker procluct. Given two matrices A and B, the Kronecker product A 0 B is 
defined as follows: Replace each entry aij of A with an entire block of entries, given 
by the product aijB. The resulting matrix is AO B. There is a nice discussion of 
Kronecker products in [6]. Here, we require only one identity: (A 0 B)(C 0 D) = 
AC 0 BD, which is valid as long as the products AC and BD exist. The proof is a 
straightforward exercise. With the identity we can prove the following lemma. 

LEMMA 3. If A and ,tu are algebraic integers, then so are A,tt and A + Htt. 

Proof. Suppose that A and ,t are algebraic integers. Then there are integer 
matrices A and B, and integer vectors v and w, such that Av = Av and Bw = yiw. 
Therefore (A 0 B)(v 0w) = (Av) ? (Bw) = Aki(vu 0w). This shows that A,tt is an 
eigenvalue of the integer matrix A 0 B, and hence, is an algebraic integer. In a similar 
way, it is easy to show that A + /tt is an eigenvalue of the integer matrix A 0 I + I 0 B. 
Therefore A + /t is an algebraic integer. 

Gauss's lemma is now easily proved. 

THEOREM 2. Let f be a monic polynomial with integer coefficients, and suppose 
f = gh where g and h are monic polynomials with rational coefficients. Then the 
coefficients of g and h are actually integers. 

Proof. The roots of f, and hence those of g and h, are algebraic integers. The 
coefficients of g and h are elementary symmetric functions of the roots, and so can 
be constructed from the roots using addition and multiplication. This shows that the 
coefficients of g and h are algebraic integers. But they were assumed to be rational. 
Thus, they are in fact integers, as asserted. 

Integrally Closed Domains We conclude with one further generalization, and a 
question. The foregoing material can be understood in the context of integral domains 
and fields of quotients (see, e.g., [7]). In our earliest results, the coefficients of the 
polynomials were integers, and we showed rational roots had to be integers as well. 
Observe that the rationals are the field of quotients for the integers. This same 
relationship extends to the results on Gaussian integers. The quotient field for Z[i] is 
Q[i]. Our earlier result states that for a monic polynomial over Z[i], any root in the 
quotient field of the Gaussian integers must itself be a Gaussian integer. 

In both cases, polynomials are considered over an integral domain, and the field of 
quotients contains no roots other than those that were already present in the integral 
domain. Proceeding with this more general setting, consider an integral domain D 
within its field of quotients F. Define A E F to be integral over D if it is a root of a 
monic polynomial with coefficients in D, and obseive that each element of D is 
integral over D. If these are the only elements integral over D, then D is said to be 
integrally closed. That is, an integral domain D is integrally closed if it contains all the 
elements of the field of quotients which are integral over D. The earlier results 
showed that the integers and the Gaussian integers are both integrally closed. 
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Now the question arises: what is the most general setting for the matrix results 
presented earlier? Lemmas 1 and 2 still hold if we replace the integers by an integral 
domain D and the rationals by D's field of quotients. The proofs of Theorem 1 and its 
extension to the complex case are not so easy to generalize, for they depend on 
analytic properties that are peculiar to the integers and the Gaussian integers. To 
illustrate the difficulties, we consider two examples. Each is a quadratic extension of 
the integers, that is, a domain of the form Z[V ] = {n + mAln, m E Z} where k is a 
square-free integer. The field of quotients is Q[A1], defined analogously. It is known 
that Z[Fk] is integrally closed just when k 0 1 (mod 4). (See, e.g., [7].) 

For the first example, k = -5, and the domain Z[iV5] is integrally closed. That 
means that A E Q[iV5] is a root of a monic polynomial over Z[iV/5] only if it is in 
Z[iv/5]. To demonstrate this, it is tempting to mimic the proof of Theorem 1. Things 
go awry right at the start, where we want to assume that IAl < 1. In the original 
argument, this step was justified by the observation that A was at most one unit away 
from an integer. Unfortunately, that is not true for Z[P5g]. Picture the elements as a 
lattice in the complex plane. The lattice points are separated by one unit horizontally, 
but by VU units vertically. That means they are too far apart. In particular, if 
A = .5 + .5iV5, the nearest elements of the integral domain are more than one unit 
away. This foils our desire to find a matrix with entries in Z[iv/5] and with an 
eigenvalue of magnitude less than unity in the quotient field. The argument breaks 
down because we are unable to produce an appropriate matrix to act as a contraction. 

The second example considers k = 5, and the result cited earlier says that 7Z[v5] is 
not integrally closed. This is easy to see directly: the polynomial t2 _t - 1 has 
coefficients in Z[V5], and roots (1 + V5)/2 in Q[V5] but not in 74v']. What happens 
if we try to follow the proof of Theorem 1 for this example? Observe that all the 
action takes place on the real line, so the elements of Q[V5] are all within one unit of 
an integer, and hence, within one unit of an element of the domain 74v']. As in 
Theorem 1, we can construct a matrix with an eigenvalue of magnitude less than 1, 
and which acts as a contraction on the corresponding eigenspace. In particular, a point 
of that eigenspace with all entries from 7[Z5] must generate a sequence of such 
points converging to the origin. However, for the current example, that presents no 
contradiction. The elements 74VF] are not discretely spaced on the real line, and in 
particular, have 0 for a limit point. So for this example, the entire proof of Theorem 1 
remains valid, but failing to result in a contradiction, offers no assurance that 7Z[V5] is 
integrally closed. 

As these two examples highlight, Theorem 1 and its extension to the Gaussian 
integers depend on a coincidence of special properties. In addition to the underlying 
structure exposed in Lemmas 1 and 2, we require a metric on the quotient field 
satisfying two conditions: (1) the elements of the integral domain cannot get arbitrarily 
close to 0 (nor hence to any other domain element); and (2) the elements of the 
domain must get within one unit of every element of the field. In other words, the 
proof demands that the integral domain elements are neither too close together nor 
too far apart. This combination of properties does occur for Z and 7[i]. We don't 
know if there are any other domains for which the same argument can be made to 
work, and so we leave it as an open question: Other than Z and 7[/i], are there integral 
domains for which the field of quotients satisfies the two conditions above? Clearly, 
any such domain will have to be integrally closed. That observation prompts another 
question: Given an integral domain D, under what conditions is there a metric on the 
field of quotients satisfying the two conditions above? 
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Conclusion 

This paper has considered several aspects of irrationality. Starting with the earliest 
history, we reviewed the formulation of irrationality in the context of incommen- 
surable segments in geometry. A geometric argument based on infinite descent was 
reformulated in the now familiar setting of dynamical systems, using matrix algebra for 
the descent mechanism. In that context, we saw natural extensions from the ring of 
integers to other structures of modern algebra. In the initial situation, we considered 
monic polynomials with integer coefficients, and saw that irrational numbers emerge 
as roots lying outside of Z. The more general setting concerns the monic polynomials 
over an integral domain D and the nature of roots that are outside of D. The cited 
result in this area, namely that 7[Zk] is integrally closed for square-free k so long as k 
is not congruent to 1 mod 4, suggests an algebraic subtlety that is absent from the 
simple dynamic arguments of Theorem 1. Perhaps it should not surprise us that these 
arguments proved ineffective for Z[V5] and Z[iVU5. It remains to be seen whether 
the dynamic approach can be successfully applied in the more general setting. 
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Arithmetic Triangles 
RAYMOND A. BEAUREGARD 

E. R. SURYANARAYAN 
University of Rhode Island 

Kingston, RI 02881 

1. Introduction 

As early as the first century, scholars such as Heron of Alexandria had shown interest 
in triangles with rational sides and rational areas. These have become known as 
rational triangles or Heron triangles. Multiplying by common denominators, the study 
of Heron triangles reduces to the study of triangles with integer sides and integer 
areas. We refer to triangles whose integer sides form an arithmetic progression and 
whose areas are integers as arithmetic triangles. This particular class of Heron 
triangles has attracted considerable attention. 

In the seventh century, Brahmagupta gave a systematic analysis for the special case 
of triangles with consecutive integer sides [4]. In the nineteenth century, H. Rath, 
R. Hoppe, and L. Aubry did considerable work with arithmetic triangles. In fact 
Hoppe noted formulas that describe the sides of arithmetic triangles [5]. In this paper 
we will see how all such triangles arise in terms of right triangles and we will derive 
Hoppe's formulas. 

Let us call a triangle d-arithmetic if its sides have lengths c, c + d, and c + 2 d, 
where c, d, and the area are integers. Although d 0 0 it will be convenient to allow 
negative values of d; thus a d-arithmetic triangle is also (- d)-arithmetic. The smallest 
example of such a triangle is the right triangle with sides of lengths 3, 4, 5. It is known 
(and we will show) that except for similarity this is the only right triangle that is 
arithmetic. Another example is the triangle (known to Heron) whose sides measure 
13, 14, and 15, and whose area is 84; both of these triangles are 1-arithmetic. We will 
show how any arithmetic triangle that is not a right triangle gives rise to two right 
triangles with integer sides. Recall that a Pythagorean triple (P1T for short) is a triple 
(a, b, c) whose components are positive integers satisfying the equation a2 + b2 = c2. 
Thus we will see how eveiy arithmetic triangle gives rise to two companion PTs. We 
will also see, conversely, how every PT (together with its companion PT) gives rise to 
an arithmetic triangle. PTs are described algebraically in [3] where middle compo- 
nents are not restricted to be positive. We adopt this convention here as well. 

We will also describe how all arithmetic triangles can be found using a parametric 
representation. This representation enables us to show that primitive d-arithmetic 
triangles exist if and only if the Diophantine equation x2 - 3y2 = d2 has a primitive 
solution, which is the case if and only if IdI = 1 or IdI is a product of primes pi + 1 
(mod 12). It is not surprising that arithmetic triangles have been a fascination through 
the centuries; simple geometric problems such as this have often given rise to 
interesting number-theoretic considerations. 

2. From an Arithmetic Triangle to a PT 

Suppose that we have a d-arithmetic triangle. Assume it is acute; we shall look at the 
obtuse case in a moment. Let a perpendicular of length a rise up from the side of 
length c + d to the opposite vertex, as in FIGURE 1. This divides the arithmetic triangle 
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c+ 2 d C +d 2C 

a 
a 

x 7 b x r b 

c + d c + d 
(a) d <0 (b) d> 0 

FIGURE 1 
Acute arithmetic triangles 

into two right triangles, with base lengths x and b as shown in FIGURE 1. Then 
x = b + 4d, because 

x2 =(c+2d)2-a2= (C2-a2) +4cd+4d2=b2+4d(x+b); 

adding 4d2 - 4dx to both sides we obtain 

( x - 2d)2 = (b + 2d)2. 

Therefore x - 2 d = ? (b + 2 d). Since the negative choice is not possible (x =-b 

leads to a contradiction) we obtain x = b + 4d. 
We claim that a and b are integers. To see this, notice that c + d = 2b + 4d so 

that 2b is an integer which means b is at least rational. Since the area (a/2)(c + d) is 
an integer it follows that a is rational as well. Now (2a)2 = 4C2 - (2b)2 is an integer 
so 2a (which is rational) is an integer. Let a = a1/2, b = b1/2, and c = c1/2. Then 
(a1, b1, c) is a PT so that one of a,, b must be even (otherwise the equation 
a2 + b2 = cj2 taken modulo 4 gives a contradiction). Thus a or b is an integer and so a 
and b are integers, since a2 + b2 = c2. 

If the arithmetic triangle is obtuse we extend the side of length c + d so that a 
perpendicular of length a will rise from one end to meet the opposite vertex as shown 
in FIGURE 2. Computation shows that x = b + 4d and a and b are integers, as in the 
acute case. 

b x 
(a) d<0, x<0 (b) d>0 b<0 

FIGURE 2 
Obtuse arithmetic triangles 
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In either case 

d = (c - 2b)/3, (1) 

as is easily seen: we have b + 4d = x = c + d - b, from which (1) follows. From this 
equation and the expression x = b + 4d we find that 

x = (4c - 5b)/3 and c + 2d = (5c - 4b)/3. 

Thus the pairs of right triangles in FIGURE 1 or 2 correspond to the PTs 

(a,b,c) and (a,(4c-5b)/3,(5c-4b)/3). (2) 

The triples in (2) are referred to as companion PTs. A formal definition is given 
below. Starting with an arithmetic triangle, its companion PTs can be found from the 
values c and d by using (1), (2), and the Pythagorean relation. FIGURE 3 illustrates this 
with the 11-arithmetic triangle having sides of length 15, 26, 37. 

37 
12 15 

1 9 26 
35 

FIGURE 3 
(12,35,37) with companion (12, - 9, 15) 

3. From a Primitive PT to an Arithmetic Triangle 

Let us see how any PT (a, b, c), such that c - 2b = 3d for some integer d, gives rise 
to a d-arithmetic triangle. In this case the second triple in (2) has integer components 
and satisfies the Pythagorean relation (as is easily checked). Note that 5c - 4b > 0. If 
4c - 5b > 0 then the two right triangles corresponding to the PTs in (2) may be 
joined at their common leg to form an arithmetic triangle in FIGURE 1. If 4c - 5b < 0 
then x < 0 and we obtain an obtuse arithmetic triangle in FIGURE 2(a). FIGURE 2(b) 
depicts the case when b < 0. The area of each of these (non-right) triangles is 
a(c + d)/2 = a(b + 2d), which is an integer. 

We are led to the following definition. A PT A = (a, b, c) is d-arithmetic if 
c - 2b = 3d for some integer d. Unlike arithmetic triangles a PT cannot be both 
d-arithmetic and (-d)-arithmetic. If A is an arithmetic PT then 

Ac = (a, (4c - 5b)/3, (5c - 4b)/3) (3) 

is the companion of A. It is easily checked that Ac is also an arithmetic PT; in fact, if 
A is d-arithmetic then Ac is (-d)-arithmetic. For example, (60,11,61) is 13-arith- 
metic and has companion (60,63,87) which is (- 13)-arithmetic. 
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We also have ACC = A. This is best seen by writing (3) in matrix form, 

a 1 ~0 0 ]a] 
[b 0=o -5/3 4/3 jb, 

Lc LO -4/3 5/3 c 

and noting that the matrix is self inverting. 
It is well known that one of the two legs a, b of any PT must be in 37Z (i.e., a 

multiple of 3) [3]. If we assume that A is arithmetic and primitive (so that a, b, and c 
are relatively prime) then a E 32; the alternative b E 3Z together with the require- 
ment that c - 2b E 37Z would yield c E 37 and so a E 37 as well since a2 + b2 = C2; 
but this contradicts primitivity. Thus a E 37Z while b and c are not multiples of 3. 
Furthermore, we claim that 

AC=3(ao,bo,co) (4) 

where (ao, bo, co) is a primitive PT. We know that 9 divides a2 = (c + b)(c - b). But 
3 cannot divide c - b because, together with c - 2b E 3Z, this would yield 2c and 
hence c E 37, which is not possible. Thus 9 must divide c + b. Adding to this the fact 
that 9 divides 3c - 6b we find that 9 divides 4c - 5b. Thus the first two and hence all 
three components of the PT in (3) are multiples of 3, and we may write Ac as in (4). 
Equation (3) shows clearly that any common divisor of a, b, and c must divide the 
components of Ac. Likewise any common divisor for (ao, bo, co) would give a 
common divisor for ACc = A. Thus (ao, bo co) is a primitive PT (but not arithmetic). A 
similar argument shows that, conversely, a non-arithmetic primitive PT multiplied by 
3 has a primitive companion. 

If we begin with any PT (a, b, c) then one of c + 2b, c + 2a is a multiple of 3. To 
see this it suffices to work with a primitive PT, for if (a, b, c) has this property then so 
does (ka, kb, kc) for any positive integer k. Now either a or b E 3Z. Assuming that 
a E 37Z we find that 

(c-2b)(c+2b) =c2-4b2=a2-3b2 

is a multiple of 3 and so 3 divides one of the factors (c + 2b). The other case is 
similar. 

Thus given any PT (a, b, c) with b > 0, after switching its legs a and b if necessary 
we see that either (a, b, c) or (a, -b, c) is arithmetic. In the primitive case, just one of 
these is arithmetic. If the middle component of this PT has the same algebraic sign as 
that of its companion we obtain an acute arithmetic triangle represented in FIGURE 1. 
If these algebraic signs are opposite, we obtain an obtuse arithmetic triangle as 
depicted in FIGURE 2, where a right triangle lies inside its companion triangle. Note 
that the sum of both middle components is (4c - 2b)/3, which is a positive even 
integer and is the length of the base of the arithmetic triangle. In this way each 
primitive PT corresponds to a unique primitive arithmetic triangle. 

4. From an Arbitrary PT to an Arithmetic Triangle 

Let (a, b, c) be a PT, with b 0 0. In how many arithmetic triangles does this PT 
"appear" in the sense that a right triangle with sides a, hb, c forms one of the 
companion triangles? We know that such an arithmetic triangle must have sides c, 
c + d, c + 2d where d = (c ? 2b)/3 or d = (c ? 2a)/3. If we write 

(a,b,c) =3jk(ao,bo,co) 
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where (ao, b 0 co) is primitive then 3i 1k divides c and d (assuming j > 0). Dividing 
out 3j-1k from a, b, c, and d we may assume that (a, b, c) is primitive or has the 
form three times a primitive PT, say 

(a, b, c) = 3(ao, bo, co). (5) 

First assume that (a, b, c) is primitive. We know that exactly one of the following 
four PTs is arithmetic: 

(a,b,c), (a,-b,c), (b,a,c), (b,-a,c), (6) 
and it appears in a unique arithmetic triangle as described earlier. In the second case 
(that of equation (5)) we find that each of the four PTs in (6) is arithmetic. Three of 
these will have a primitive companion, and the other will have a companion equal to 
nine times a primitive PT, namely the one in (6) which is three times an arithmetic 
PT. (If A = 3 A where Ao is a primitive and arithmetic PT then Ac = 3 Ac and Ac is 
itself three times a primitive PT.) Except for this last case each of the arithmetic 
triangles is primitive. 

We conclude that every nontrivial PT corresponds to a right triangle that appears in 
exactly one or four arithmetic triangles, depending on whether its components are all 
relatively prime to 3. For example, the PT (12, 5, 13) or any of its multiples relatively 
prime to 3 appears in exactly one arithmetic triangle. However, the PT 3(12,5, 13) (or 
any of its multiples) appears in four arithmetic triangles as illustrated in FIGURE 4. 

45 39 36 

36 

42 77 

(36,15,39) =9(4,3,5) (36, - 15, 39)= (36, 77, 85) 

39 3 1 

15 17 

8 28 36 76 

36 112 

(15, 36, 39)c=(15, - 8, 17) (15, - 36, 30)= (15, 112, 113) 
FIGURE 4 

The four arithmetic triangles for 15, 36, 39 

5. An Algebraic Excursion 

In [3] we describe how the set of all PTs (with possibly negative middle components) 
forms a commutative cancellative semigroup under the operation 

(al,bl,cl)*(a2,b2,c2)= (aja2,b1c2+b2cl,b1b2 +c1c2). (7) 

The PT (1, 0, 1) is the identity element in this semigroup. (Actually, when PTs 
corresponding to similar triangles are identified appropriately we obtain a group with 
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the inverse of (a, b, c) corresponding to (a, -b, c).) It can be shown that the set of 
arithmetic PTs is closed under *; a computation shows that if (ai, bi, ci) is d,-arith- 
metic for i = 1,2, then the PT on the right-hand side in (7) is (3d1d2- bb2)- 
arithmetic. Also, if (a, b, c) is an arithmetic PT then it is easy to check that 

(a,b,c)*(a,b,c)C= (a2/3)(3,4,5). (8) 

Suppose that we have an aiithmetic triangle that is already a right triangle. Referring 
to FIGURES 1 and 2 we see that the companion of (a, b, c) must be trivial and so have 
the form (a, 0, a) = a(l, 0, 1). Thus the left-hand side of (8) reduces to a(a, b, c) from 
which it follows that 

(a, b, c) = (a/3) (3, 4, 5). 

This shows that, up to similarity, the (3, 4, 5)-triangle is the only right triangle that is 
arithmetic. 

6. Parametric Representation 

For a primitive PT (a, b, c) let (b + c)/a = n/rn where n and m are relatively prime. 
It is shown in [3] that 

(a,b,c)= { |(2nrn, n2 - 1ni2 n2 + in2) if a is even 
l (nm, (n2 _ m2)/2, (n2 + m2)/2) if a is odd. (9) 

Let us refer to (n, in) as the parametric pair for (a, b, c). If (a, b, c) is d-arithmetic 
then computing (c - 2b)/3 we find that 

d = {2 _ n2/3 if a is even 

(1/2)(rn2 - n2/3) if a is odd. 

Now (a, b, c)c = (a, (4c - 5b)/3, (5c - 4b)/3) = 3(ao, bo, co). To find the parametric 
pair for the primitive PT (ao, bo, co) we divide the sum of its final two components by 
its first and obtain 

(5c - 4b + 4c - 5b)/3a = 3(c - b)/a = 3m/n. 

Since n and m are relatively prime and a (= 2nm or nm) is divisible by 3, there are 
two cases to consider: m E 3Z or else n E 3Z. If m E 37Z then (3n, n) is the 
parametric pair for (ao, bo, co) and we obtain a = 3aO = 6nm or 3nin which contra- 
dicts (9). Thus n E 3Z and (in, n/3) is the parametric pair for (ao, bo, cO). 

In summary, any arithmetic triangle may be reduced to a primitive one whose 
three sides are relatively prime. The resulting triangle gives rise to two companion 
PTs, one of.which is primitive. Using this primitive PT we obtain the parameters n 
and in which are relatively prime and with n E 3Z as described above. 

Conversely if n and m are two relatively prime positive integers with n E- 3Z then 
letting 

c = n2 + m2 and d = m2 _ n2/3 (10) 
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we obtain a triangle with sides c, c + d, c + 2d provided that one of the triangle 
inequalities is satisfied: 

c+2d<c+(c+d) if d>O,or 
c<(c+d)+(c+2d) if d<O. 

Now the first inequality (for d > 0) is equivalent to d < c, which is clear from the 
definition of c and d. The second inequality (for d < 0) reduces to - 3d < c, which is 
also clear by definition of c and d. To see that our triangle is arithmetic we use 
Heron's famous area formula [5], 

area = s(s-S)(S-S2)(S-S3), 

whlere sI S2, S3 measure the sides of the triangle and s is half the perimeter. Thus 

area = Vs(s - c)(s - c - d)(s - c - 2d), 

where s = 3(c + d)/2. Expressing this in terms of n and in we obtain 

area 2mn(n2 + 3m2)/3, 

which is an integer because n E 3Z. Our triangle is primitive unless both n and m are 
odd, in which case c and d are even and we obtain a primitive arithmetic triangle 
which has been doubled (so we divide its legs by 2). Table 1 gives all primitive 
arithmetic triangles for n, m < 9. When n < m we obtain obtuse triangles since b < 0. 
When n > m the triangles are acute if 3m > n and obtuse if 3m < n; this corresponds 
to whether the term 4c - 5b in the middle component of the companion is positive or 
negative respectively. 

TABLE 1. The first few primitive arithmetic triangles 

m n d c c+d c+2d 

1 3 -1 5 4 3 
2 3 1 13 14 15 
4 3 13 25 38 51 
5 3 11 17 28 39 
7 3 23 29 52 75 
8 3 61 73 134 195 
1 6 -11 37 26 15 
5 6 13 61 74 87 
7 6 37 85 122 159 
1 9 -13 41 28 15 
2 9 -23 85 62 39 
4 9 -11 97 86 75 
5 9 - 1 53 52 51 
7 9 11 65 76 87 
8 9 37 145 182 219 

Finally, if we write n = 3k in (10) then we obtain the equation 
m2-3k2=d (11) 

and Hoppe's formulas [5, p. 197] 

c=9k2+m2, c+d=2(3k2+m2), c+2d=3(k2+m2), 
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describing all primitive arithmetic triangles (remembering to take half of c and d 
when m and k are both odd). 

7. The Allowable Values d 

When d = 1, Eq. (11) reduces to the Pell equation, whose infinite solution set is well 
known and will be described shortly. It is known that Eq. (11) has no solution if 
d =-1; the (-1)-arithmetic triangles arise from solutions to the equation x2 - 3y2 
-2. Our work in Section 6 indicates that d-arithmetic triangles correspond to 

positive solutions of the equation 

x2- 3y2= =ad, a=1or2. (11A) 

A glance at Table 1 might suggest that for I dl > 1 only certain prime integer values of 
d are allowable for a primitive d-arithmetic triangle. This is not the case as the 
proposition below shows. The allowable values d arise if and only if d is odd and the 
Diophantine equation (11A) has a positive primitive solution (in, k) where in t 37Z (in 
which case we obtain the triangle described by (10) with n = 3k). Using the 
substitution 

mO= (m+3k)/2and ko= (m+k)/2 

when m and k are both odd, this condition is equivalent to the existence of a 
primitive solution (n0, ko) to the equation 

x2 - 3y2 = + d (1lB) 

where mo0 X 3Z. We will focus on finding the positive solutions to (lIB) when Idl > 1. 
The following modified form of a result due to Brahmagupta shows how allowable 
values multiply. 

PROPOSITION (Multiplicative Property). If d1 and d2 are relatively prime integers 
and both allowable values for primitive arithmetic triangles, then dld2 is also 
allowable. 

Proof. Brahmagupta's rule of composition [1, p. 320] tells us that if mi - 3ki + di, 
for i = 1, 2, then (lIB) is satisfied for d = d1 d2 and for m and k defined by 

mn + ;k = (ml + Ikl)(m2 + k2) 

Comparing both sides of this equation we see that 

m=mm2 +3k1k9, k=mlk2 +m 2k. (12) 

The first equation in (12) shows that m X 3Z if mi X 3Z. If d1 and d2 are relatively 
prime then (m, k) is primitive: the equations in (12) yield 

kM2-k2m= +kld2, mlk-klm= +k2dl. 

Keeping in mind that mi X 3Z we see that any prime q dividing both k and m will 
divide the right hand sides of these equations and lead to a contradiction. This 
completes the proof. 

Suppose that d is allowable so that there exists a primitive solution (in, k) to (lIB) 
with in X 3Z. Then k is relatively prime to d and so to each odd prime factor p of d. 
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Note that p 0 3. Let d = rp and write (lIB) as 

m2- 3k2 = + rp. (13) 

Now k has a multiplicative inverse modulo p so there exists an integer t such that 
m kt (mod p). Equation (13) then shows that 

t' 3 (mod p). (14) 

But it is known that this is possible if and only if p ? 1 (mod 12) (see [1, p. 131]). 
In particular, if d is allowable then d + 1 (mod 12). The converse is not true; for 
example, there are no 49-arithmetic triangles. However, a partial converse holds, 
namely for primes: If p is a prime such that p ? 1 (mod 12) then (lIB) with d = p 
has a primitive solution (so that p is allowable). For a nice proof of this result see 
[6, p. 211]. 

Let p be such a prime and let us show that pi is allowable for any positive integer 
i. Brahmagupta's rule of composition shows that (lIB) is solvable when d = pi. 
Clearly the first component of a solution can not be a multiple of 3 since p > 3. But 
how do we know that the solution is primitive? If (in, k) is a primitive solution to 
(lIB) with m X 37 then the composite solution (in2 + 3k2, 2mk) to X2 - 3 y2 = d2 is 
primitive since a prime divisor (necessarily odd) of both M2 + 3k2 and 2ink would 
divide d, mn, and k, contradicting the primitivity of (in, k). In particular pi is 
allowable when i = 2i. If i does not have this form let j be an integer such that 
i < 2i. Let (n1, kl) be a primitive solution of x2 - 3y2 = p and let 

in,, + kW = (ml + kl3) 

Brahmagupta's rule of composition shows that (n., kjV) is a solution to 

x2- 3y2 = pw. 

Composing solutions for w = i and w = 2i - i we see that 

M2j= minjn2ji + 3kik2ji_, k2i = kim2j_ + mn,k2-i. 

These equations show that any common divisor greater than 1 of rni and ki 
contradicts the primitivity of (in2j, k2). We conclude that pi is allowable. 

We shall describe how to find all primitive d-arithmetic triangles for a given 
allowable value d. The multiplicative property shows that it suffices to work with the 
case in which d is a prime power. In order to avoid having to treat the two cases of 
(lIB) separately we describe a d-arithrmetic triangle more symmetrically as shown in 
FIGURE 5. Heron's formula for the area becomes 

3hg= /3g(g-d)g(g+d) 

which reduces to 

g2-3h2=d2 (15) 

an equation similar to (11). Note that (lIB) (for one of the choices of algebraic sign) 
has a primitive solution (in, k) with m X 3Z if and only if (15) has a primitive solution 
since either occurs if and only if there exists a primitive d-arithmetic triangle. We 
summarize what has been established so far. 
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2g - cl 2ge + d 

3/i 

2 gY 

FIGURE 5 
A d-arithmnetic triangle 

THEOREM (Allowable d-values). The following statements are equivalent for an odd 
integer d. 

(i) There exist primitive d-arithmetic triangles. 
(ii) d = + 1 or is a product of primes pi ? 1 (mod 12). 
(iii) x2 - 3y 2 = d2 has primitive (integer) solutions. 
(iv) X2 - 3y2 = + d, x X 3Z has primitive (integer) solutions for one choice of 

algebraic sign. 

We seek all primitive solutions (g, h) to (15) for relatively prime integers g and h. 
References [1], [2], and [6] are good sources for this kind of problem. When d = 1 it is 
known that the positive solutions (ga, hj) of (15) are given by the sequence 

(g1, hi) = (2, 1), (7, 4), (26, 15),. .., (16) 

where g?+2 = 4gj+ 1 - gj and h,+2 = 4hj+ 1 - hj. A neat proof of this fact is given in 
[4]. This describes all triangles that are 1-arithmetic. If the least positive solution of 
(15) with Idl > 1 is obtained, then it may be combined using Brahmagupta's rule of 
composition with the sequence in (16) to produce an infinite number of primitive 
d-arithmetic triangles. However, this does not produce all of them. 

In order to find all solutions to (15) we assume that d = pi where p is an allowable 
prime. Reasoning as before, if (g, h) is a primitive solution to (15), then h is relatively 
prime to p (and so is invertible modulo p). Thus we can find an integer t such that 
g ht (mod p), and we may take -p/2 < t < p/2. Equation (15) then shows that 
t 3 (mod p). This congruence has exactly two solutions +t between -p/2 and 
p/2 (see [1, p. 72]). Let Ct be the set of all positive primitive solutions (g, h) of (15) 
for a given value t. It can be shown that any two members of Ct are related by a 
(Brahmagupta) composition with a member of the sequence (16) (see [1, p. 345]). 
Thus it suffices to find the least positive solutions in each of the two classes C-t 
and Ct. 

Let us find all 13-arithmetic triangles. By inspection we find the first two positive 
solutions of the equation g2 - 3h2 = 132 to be 

(G1, H1) = (14,3) and (G2, H2) = (19,8), 
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and these are both primitive. Since t2 3 (mod 13) we must have t = + 4. The least 
positive members of the classes C_4 and C4 are (14,3) and (19,8) respectively. 
Composing these with the members of sequence (16) using Brabmagupta's rule of 
composition we obtain the values Gj and Hj, describing all primitive 13-aiithmetic 
triangles. The first few of these are given in Table 2. 

TABLE 2. The first few 1 3-arithmetic triangles 

Gj Hj 22Gj-d 2 Gj 2Gj + d 

C_4 14 3 15 28 41 
37 20 61 74 87 

134 77 255 268 281 
499 288 985 998 1011 

C4 19 8 25 38 51 
62 35 111 124 137 

229 132 445 458 471 
854 493 1695 1708 1721 
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NOTES 

A Study in Step Size 

TEMPLE H. FAY 
University of Southern Mississippi 

Hattiesburg, MS 39406-5045 

While experimenting with giving polar plots some "texture," I discovered an interest- 
ing effect that might intrigue students: high sensitivity to step size. The base equation 
is that used to generate the butterfly curve (see [1], for example) 

r( 0 ) = ecos(o)-2 cos(40 ), 

but the technique can be applied, and the same effect observed, using almost any 
polar equation. 

The "texture" is obtained by multiplying this base curve by a rapidly varying 
sinusoidal factor, in this case by sin4(AO), where A = 99999999. The fourth power was 
chosen to keep the factor non-negative and small. The value of A was chosen 
arbitrarily; any large number would produce the same effect. 

Data sets, consisting of points (x, yYn) where 

p() = ( ecos(o)-2 cos(40 ))sin4( AO6) 

and 

x1= P( 0Q,)sin( On) 

Yn =P( On)cos( o), 

were produced by setting 00 = 0, and On = 6n-I + h where h denotes the step size, 
for 0 < 0 < 2X. (Reversing the sine and cosine from their "usual" positions rotates the 
butterfly 900 into the upright position shown.) These data sets contain roughly 11,500 
to 42,000 points. 

The plots shown on the cover of this issue were produced with step sizes as follows: 

hl = 0.00015 h2 = 0.0003 

h3 = 0.0005 h4 = 0.00055 

The plots in the following Figure used these step sizes: 

h5 = 0.0007 h6 = 0.000169 

h7 = 0.000711 h8 = 0.00071 

11 6 
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' 4f N; X X ; j 

FIGURE 
Four butterfly curves 

Watching the dynamics of the plotting of the sequentially-generated points (x,,, yn) 
is interesting in and of itself. Students might enjoy experimenting with different 
equations, values of A, and step sizes. 

REFERENCE 

1. T. H. Fay, The butterfly curve, American Mathematical Monthly 96 (1989), 442-443. 

This content downloaded from 193.255.248.150 on Wed, 11 Feb 2015 03:32:11 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


118 MATHEMATICS MAGAZINE 

Loosest Circle Coverings 
of an Equilateral Triangle 

HANS MELISSEN 
Philips Research Laboratories 

Prof. Holstlaan 4, 5656 AA Eindhoven 
The Netherlands 

1. Introduction The problem of completely covering a circular space painted on a 
cloth by placing over it, one at a time, five smaller but equal circular tin discs used to 
be a popular game at English fairs around the turn of the century; see [4, 12]. Its 
difficulty lies in the restriction that no disc may be moved once it is put down. The 
size of the discs is of course designed to prevent the unwary player from finding a 
correct covering without a good deal of trial-and-error. An interesting characteristic 
from a mathematical point of view is the smallest radius of the tin discs for which the 
puzzle is solvable. The corresponding solution is the loosest circle covering of the 
circular disc. Neville showed in 1915 [11] that a covering can be found if the radius of 
the smaller discs exceeds 0.609382864 ... times that of the large circle. His configura- 
tion is shown in FIGURE 1. He actually used this example to illustrate a new method for 
numerically solving systems of nonlinear equations. Unfortunately, he reported the 
incorrect value of 0.6094183. In 1983 Karoly Bezdek proved the optimality of 
Neville's configuration (see [2, 31). Here, again, an incorrect numerical value of 

FIGURE 1 
Neville's loosest covering of a circle with five circles. 
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1/1.640... was computed. In his dissertation [1], Bedzek treated the covering of a 
circle by six circles. The proof is complicated. The cases of two, three, four, and seven 
circles are easy. The best coverings with eight, nine, ten, and eleven discs were treated 
by Krotoszyinski [6] in 1993, but his proofs are incomplete. Correct proofs for nine and 
ten discs were found recently by G. Fejes Toth. Melissen and Schuur have improved 
Krotoszyn'ski's covering with eleven circles. Further loose coverings with up to 20 
discs were given by Zahn [14]. Loose circle coverings of a square with up to 10 circles 
were given by Tarnai and G-aszpar in 1995 [13]. Their conjectures for n = 6 and 8 
were improved in [10]. Recently, Heppes and Melissen [5] found the optimal 
coverings of a general rectangle with 2, 3, 4, 5, and 7 circles. 

In analogy to covering a circle and a square with circles and packing an equilateral 
triangle with circles ([7, 8, 9]), we will consider the related problem of covering an 
equilateral triangle with congruent circular discs. We shall determine the loosest 
covering for up to six discs. Finally, we will consider some coverings of the triangle 
with discs that need not be congruent. 

The smallest common radius of n congruent closed circular discs that can cover a 
equilateral triangle of unit edge length (including its interior) will be denoted by Tr. 

2. One disc The unique smallest circle that covers the vertices of the triangle is 
obviously the circumscribed circle, with radius r1 = V/3 (FIGURE 2a). 

(a) (b) 
FIGURE 2 

Loosest covering of an equilateral triangle with one and two congruent circular 
discs. The dotted Reuleaux triangle in (b) bounds the possible position of the 
center of the second disc. 

3. Two discs If the vertices of the triangle are covered by two discs, one of the 
discs must cover two vertices, so T2 ? 1/2. Now suppose that the radius of the two 
discs is equal to 1/2. The center of one disc must then lie halfway between two 
vertices. The remaining region can easily be covered by the second disc. Its center can 
lie anywhere in the dotted Reuleaux triangle of constant width 1/2 indicated in FIGURE 

2b. This shows that i2 = 1/2 and that the loosest covering is not unique. 

4. Three discs Consider the three vertices of the triangle together with its center. 
Two of these four points must be covered by one of the discs, so r3 2 ? /6. If we 
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have three discs of radius 4v /6, then the position of the one that covers two of the 
four points (the center and a vertex) is fixed. As the center of the triangle lies on the 
boundary of this disc, it must be covered by yet another disc. The two remaining discs 
must cover the two uncovered vertices and the center of the triangle, so one of the 
discs must cover two of these points and is also fixed. The last disc fits in exactly one 
position to cover the rest of the triangle. Consequently, r3 = F/5/6, and the corre- 
sponding optimal covering is unique, see FIGURE 3a. 

P2 P:-3 

P4 P. Pa 

(a) (b) 

FIGURE 3 
Loosest covering of an equilateral triangle with three congruent circular discs (a). 

5. Four discs The solution for four discs is less trivial. The discs must cover the 
three vertices and the three centers of the edges of the triangle in FIGURE 3b. This 
means that two of these six points must be covered by the same disc, so r4? 1/4. 
Unfortunately, this bound is not sharp; the triangle cannot be covered by four discs of 
radius 1/4. The best possible value for the radius turns out to be 4 = 2 - F= 
0.267949... 

To show this, take four discs D1, . . ., D4 of radius 2 - . No single disc can cover 
two vertices of the triangle, so each of the three vertices is covered by its own disc 
(D1, D2, D3). The three discs may be moved such that their centers are inside the 
triangle and the covered vertex is on the boundary of the covering disc, without 
destroying the covered property. As the radius of the discs is slightly smaller than 
F/5/6, the radius of the incircle of the triangle, the fourth disc D4 cannot have points 
in common with all three edges of the triangle. This means that at least one of the 
edges must be covered by two discs (D1, D2), that also cover the two corresponding 
vertices (see FIGURE 4a). The distance between q1 and q2 always exceeds 2(2 - ), 
so qI and q2 cannot be covered by D4 simultaneously. Therefore, two of the edges 
must be covered completely by D1, D2, and D3. This is possible in exactly one way 
(FIGURE 4b). Finally, there is one possible position in which D4 covers the remainder 
of the triangle. This configuration is unique up to rotations, so it must be optimal. 

6. Five discs Two of the six points PI, . . - P6 in FIGURE 3b must be covered by the 
same disc, which shows that r5 ? 1/4. The triangle can actually be covered by five 
discs of radius 1/4 (see FIGURE 5a), so T5= 1/4. The corresponding solutions are 
shown in FIGURE 5a. Four discs are fixed. The center of the fifth disk can move inside 
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(/2 ~ ~ ~ _ 

(a) (b) 
FIGURE 4 

Optimal covering with four congruent circles (b). 

(a) (b) 
FIGURE 5 

Loosest coverings of an equilateral triangle with five aind six congruent circles. 
The dotted Reuleaux triangle in a) encloses the feasible regioni for tlle center of 
the fifth disc. 

a small Reuleaux triangle. That all solutions are of this form can be seen by checking a 
number of possible cases. Two of the six points P, , P6 must be covered by one 
disc. Apart from rotations and reflections we can assume that either Pi and P2 are in 
one disc, or P2 and p3. In the first case all points (except possibly PI), and in the 
second case all points must be covered by the remaining four discs, so in both cases 
there must be another disc that covers two points. We leave the completion of these 
arguments to the reader. 

7. Six discs We will show that T6 = 3 /9 and that the obvious loosest covering in 
FIGURE 5b is unique. Suppose that we have a covering with discs of radius r < T6. 

Again, there are distinct discs D1, D2, and D3 that cover each of the vertices. The 
inequality 4r < 1 shows that no two discs can cover an edge completely and also that 
two centers of the edges cannot be covered by one disc. Therefore, apart from D1, 
D2, and D3, there must be a unique disc (D4, D5, DO) associated with each edge. It is 
easy to see that D4, D5, and D, must have some point p in common. 

This content downloaded from 128.235.251.160 on Wed, 14 Jan 2015 06:55:50 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


122 MATHEMATICS MAGAZINE 

To find a lower bound for r we will now determine the maximum length of the 
boundary of the triangle that can be covered by these six discs. As before, D1, D2, 
and D3 can be translated until each has a vertex on its boundary. The length of the 
boundary of the triangle that is covered by such a disc is equal to 

2[cos sD + cos( - - 1; 2F3;r cos( 1;0 6 

where sp is the angle between the line through the vertex and the center of the disc, 
and one of the edges of the triangle. This length is maximal for p = ir-/6, so 6F3 r is 
an upper bound for the length covered by D1, D2, and D3. We must also determine 
the maximum length that can be covered by D4, D5, and D6. First, each disc is 
pushed outward, perpendicular to the edge it intersects, until either p is on the 
boundary of the disc, or the maximum length (2r) is covered. The total length 
covered by D4, D5, and D6 is therefore at most 

3 

E f( h), 
i = 1 

where the hi denote the distances from p to each of the edges and 

f(h) =2 V2rh-h2 if r<h <2r, 

= 2r if h < r. 

As f is concave we have that 

3 3 

Ef(hi) < 3f (- h) 

By computing the area of the triangle in two different ways it is easy to see that 

h1+h2+h3= -V 1 22' 

so the maximum length of the boundary covered by D4, D5, and D7 is at most 

V12F3 r - 3. The total circumference of the triangle must be covered, so 

6F3 r + /125;r-3 ? 3. 

This shows that r 2 i6. If r = r6, all maxima must be assumed to cover the triangle. 
The only possible covering is shown in FIGURE 5b. 

8. Incongruent discs In this last section we will sketch some further questions and 
results. So far we have used congruent discs to cover the triangle. Can these coverings 
be improved by relaxing the condition that the discs need to be of equal size? By 
improving we mean: Can the triangle be covered by circular discs with a smaller total 
area? This question would be completely uninteresting for circle coverings of a circle, 
but the solutions for the triangle are nontrivial. For two discs the answer seems 
simple. A solution that naturally presents itself is to use the fixed disc in FIGURE 2b and 
to cover the small triangle with a smaller disc. In this way the total area of the 
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covering discs can be reduced from iriy2 = 1.570796... to iriy3 = 1.047195.... 
Surpiisingly, this is by no means the best solution! To find the optim-al covering we 
note that one of the discs must cover two vertices, and therefore its radius R must be 
equal to at least 1/2. It covers the maximum area of the triangle if the two vertices lie 
on its boundary. The remaining triangular region needs a disc of radius 

6 2~~~~~ r= 63 - -2 V24R2 

to cover it. The total area of the two discs 

,7T2 R2- 63 14R 2_ 1-6) 

is maximal for R = 39 /12, r = F/ /12. The total area of the discs in FIGURE 6a is 
then equal to 7ii/24 = 0.916297.... 

(a) (b) (c) 

FIGURE 6 
Loosest covering of an equilateral triangle with two and four circles. The 
covering with three discs is suboptimal. 

Similarly, one might surmise that the covering with three discs can be improved by 
a configuration like FIGURE 6b. For the best configuration of this form the radius of the 
largest disc is equal to 

R = + -+ + )= 0.466255 ... where s = (4 + 2 v8)/ 

The radius of the smaller discs is equal to 0.134921... . This covering is only 
suboptimal. The total area of the discs is 0.797341. . ., compared to r/4 = 0.785398 ... 
for the original covering. 

To show that the covering in FIGURE 3a is also the best solution here, suppose that 
we have a covering with three discs of radius 'rl, r2, and r3. As we already have a 
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covering with an area of T/4, each radius must be smaller than 1/2, so each of the 
vertices must be covered by its owni disc. We can assume that this vertex lies on the 
boundary of the disc. The length of the boundaiy of the triangle covered by such a 
disc is at most 2F3rj if rj < F//4 and 23rj + V43rj - 3 if rj 2 F//4. Only one 
of the discs can have a radius that is larger than F/5/4. First, consider the case that all 
radii are smaller than F/ /4. The maximum length covered, 2F35(r1 + r2 + r3), under 
the restriction that r2 + r 2 + r2 < 1/4 is then assumed for r1 = r2 = =r = /4. This 
is the covering shown in FIGURE 3a. In the situation that one of the discs has a radius 
that exceeds F3 /4, we must find the maximum of 2F3 (r1 + r2 + r3) + V4F/r1 - 3 
under the restriction that r 2 + r2 + r2 < 1/4. This maximum is assumed for r1 = 
0.459920... and r2 = r3 = 0.138695... and has the value 2.985892.... As this value 
is smaller than 3, the circumference of the triangle cannot be covered completely, so 
FIGURE 3a remains the best solution. 

By using similar arguments it can be seen that the loosest covering with four 
circular discs is shown in FIGURE 6c. The radius of the large disc is equal to 21 /12, 
and the smaller discs have a radius of F3 /12. This covering improves the area of the 
discs from 4(7 - 43)-T = 0.902224 ... for a covering with congruent discs to 5I/24 
= 0.654498.... 
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The Smallest Equilateral Cover 
for Triangles of Perimeter Two 

JOHN E. WETZEL 
University of Illinois 

Urbana, IL 61 801 

In an obscure but interesting pamphlet [7], Josiah Smith' announced his belief that 
every triangle of perimeter two can be covered by an equilateral triangle of side one. 
"Experiments suggest," he wrote, "that every triangle with perimeter two can be 
placed in an equilateral triangle of side one, although I cannot establish this fact in 
fullsome rigour. ... No smaller equilateral triangle has this property, because flat 
isosceles triangles of base 1 - 8 and equal sides 1 + 8 must fit." 

In this note we solve Smith's problem by determining the side of the smallest 
equilateral triangle (i.e., closed equilateral-triangular region) that can cover eveiy 
triangle of perimeter two, and we discover that Smith's intuition was not correct: a 
side longer than one is required. We show that the smallest equilateral triangle To 
that can cover every triangle with perimeter two has side so:= 2/rno, where mi0 is the 
global minimum of the trigonometric function 

f(x) 1/(1+sinj).sec( -x) (1) 

on the interval [0,-6] (see FIGURE 1). A little numerical work2 (the details of which we 
omit) shows that the global minimum value rno = 1.99431 occurs at the (unique) point 
xo 0.074733, approximately 4.28186?; so the side so of To is about so 1.002851. 

2.20 y 

2.15 

2.10 

2.05 

2.00 

1.95 I I I I 

0 IT IT IT IT 5ir IT 

36 18 12 36 6 
FIGURE 1 

f(x) = (I + sin x/2)sec(r/6 - x) for 0 < x < vr/6. 

We begin by proving that an equilateral triangle of side s contains a relatively large 
triangle of each possible shape; then scaling shows that To can accommodate every 

'Also the author of a seminal book [6] on arrangements of hyperplanes. (See Zaslavsky [11].) 

21 want to express my gratitude to Steven Knox and Paul McCreaiy for (independently) coaxing these 
numerical results out of AMathematica. 
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triangle of perimeter two (Corollary 2). In Theorem 3 we show that no smaller 
equilateral triangle has this property. The note concludes with a few remarks about 
some closely related problems. 

Write T(s) for the equilateral triangle of side s (so that To = T(so)), and let p(A) 
be the perimeter of triangle A. 

THEOREM 1. For any given triangle A, the equilateral triangle T(s) with side s 
contains a triangle A* similar to A with perimeter p(A*) ? mos. 

Proof. We build such a triangle A* for each given triangle A. Suppose first that 
some two angles of A are not larger than 600, and arrange the notation so that 
LQ? < 600 and L R < 60?. Then there is a point X in T(s) so that A* := XBC -PQR 
- A. Then p(A*) = p(XBC) 2 2s > mos. 

In the contrary case there are two vertices at which the angles are both larger than 
60?. Arrange the notation so that L Q > 600 and L R > 60?. The argument depends on 
the size of the third angle L P. 

Suppose that L Q > 600, L R > 60?, and L P > 30?, so that both L Q and L R are 
acute. Let M be the midpoint of BC, and take points Y on BM and Z on MC so 
that L AYM = L Q and L AZM = L R; then A* := AYZ - PQR = A. To show that 
p(A*) 2 mos we argue geometrically. Let Y1 and Z1 be the points on BC so that M 
is the midpoint of the segment Y1Zj and Y1Zj = YZ (see FIGURE 2). Then L Y1 AZ1 > 
L YAZ = L P ? 300, and AY1 + AZ1 < AY + AZ. (It is an elementary exercise to show 
that if a point E is not on a line 1 and points F and G on 1 are d apart, then L FEG 
is maximized and EF + EG is minimized when F and G are symmetrically located 
about the foot of the perpendicular from E to 1.) Consequently AY,Zl surrounds an 
isosceles triange AY2Z2 with apex angle 300 at A and altitude (V3/2)s, whose 
perimeter is 3 s(sec 150 + tan 150) > 2.25s. Hence p(A*) = p( AYZ) 2 p( AY1Zl) > 
p(AY2Z2)> 2.25s > mos. 

Finally, suppose that 60? < L Q < L R, and L P < 300. Then there are points Y on 
AB and Z on BC so that A* = AYZ PQR = A (see FIGURE 3). To establish that 
p(A*) 2 mos we again argue geometrically. Since AY 2 AZ there is a point S on AY 
with AS = AZ. Then the isosceles triangle A1 = ASZ has apex angle L P < 300; and, 
writing L P = x (and switching to radians), we see that AZ = (F3 /2)s * sec(ir/6 - x). 
Since SZ = 2 AZ sin x/2, it follows that p(A1) = s .f(x) 2 mos, where f is defined by 
(1). Consequently p(A*) 2 p(A1) 2 mos. 

* . . ck 

17 

A <p 

I 

$ A 

?ue 
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Scaling shows that the equilateral triangle To can cover every triangle of perimeter 
two: 

COROLLARY 2. If s ? so = 2/mo, then the equilateral triangle T = T(s) can cover 
every triangle of perimeter two. In particular, To can cover every such triangle. 

Proof. If s ? so, then according to Theorem 1, for every triangle A of perimeter 
two there is a triangle A* in T(s) similar to A whose perimeter is at least 
mos 2 mo(2/mo) = 2. So the triangle A, which certainly fits in the larger triangle 
A*, surely fits in T(s). 

To see that no smaller equilateral triangle has this property, we examine an 
isosceles triangle that gives the equality in the inequality of Theorem 1 and show that 
it fits in no smaller equilateral triangle. 

THEOREM 3. If an equilateral triangle T(s) can cover every triangle of perimeter 
two, then s > so. 

Proof. Let A0 be the isosceles triangle of perimeter two whose apex angle is the 
angle xO. (See the shaded triangle in FIGURES 4 and 5.) The two equal sides of A0 have 
lengths 

1= (I + sin 2) 0.96399, 

and the base has length 21 sin xO/2 = 0.072025. Note that the altitude ho = 
I cos xO/2 of A0 exceeds 0.96. 

A . ..i 

-F-74 J 

Let to be the side of the smallest equilateral triangle that can accommodate AO. 
(The existence of such a triangle is an elementary consequence of compactness.) 
Evidently to < so = 2/mo. We investigate how T(to) might fit around AO. 

First of all, it is clear that all three vertices of to must lie on the sides of T(to), 
because otherwise a suitable small motion would move to entirely inside, contrary to 
the minimality of to. 

This content downloaded from 128.255.6.125 on Tue, 27 Oct 2015 23:05:38 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


128 MATHEMATICS MAGAZINE 

Suppose that one side of T(to) contains the base of A0. Then the minimality 
requires that the apex of A0 be the opposite vertex of T(to), and we can arrange the 
notation so that T(to) = ABC and A0 = AYZ, with Y and Z on BC located symmetri- 
cally about the midpoint M of BC (see FIGURE 4). Then (W3/2)to = ho > 0.96, so that 
to > 1.1, contraiy to to < so. So no side of T(to) contains the base of A 0. 

Suppose next that one side of T(to) contains one of the two equal sides of AL0. 

Then the minimality requires that the apex of A0 be at a vertex of T(to), and we can 
arrange the notation so that T(to) =ABC and A0 = AYZ, with Y on AB and Z on 
BC (see FIGURE 5, cf. FIGURE 3). Then 2 = p(A0) = tof(xO) = tOiiO, so that in this case 
to = 2/rn0 = so. Our claim is that this is the minimal configuration. 

Suppose finally that each vertex of A0 lies on a different side of an equilateral 
triangle T(t) = DEF, and arrange the notation so that the apex of A0 lies on DF 
nearer D than F and the base vertices lie on DE and EF (as in FIGURE 6, which also 
shows triangle T(to) = ABC in the position described in the previous paragraph, with 
the base vertices of A 0 on AB and BC and the apex of A0 at A). Now an elegant 
geometric argument of Ross Honsberger (see p. 36 of [4]) shows that t > to. Indeed, 
in the notation of FIGURE 6, where P and Q are the centers of the two 240? arcs 
outward on the two equal sides of Ao in which the 60? angles of T(t) and T(to) at A, 
C, D, and F are inscribed, PU I QA, QV I AD, and PV I QV, and W = QA n PV, 
we see that t = 2VP > 2WP > 2UP = to. So no equilateral triangle T having each 
vertex of A 0 on a different side of T can be minimal3. 

D 

/~~~ E Q Zt C 

FIGURE 6 
Comparison of two configurations. 

So, as claimed, the minimal configuration is the one pictured in FIGURE 5. It follows 
that an equilateral triangle T(s) of side s that can accommodate every triangle of 
perimeter two, which must, in particular, accommodate AO, must have side s > to = so. 

Combining the assertions of Corollary 2 and Theorem 3 gives us the solution to 
Smith's problem: 

THEOREM 4. The equilateral triangle To = T(so) is the smnallest equilateral triangle 
that can accomnmodate every triangle of perimeter 2. 

3In fact, this possibility is already ruled out by a recent nice result of K. A. Post [5], wvho proved that if a 
triangle ABC contains a triangle PQR, then it also contains a triangle congruent to PQR having two of its 
vertices on the same side of ABC. 
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It is worth noting that since the extremal triangles are isosceles, one need not 
minimize over all similarity classes-the isosceles triangles are enough. So we find: 

THEOREM 5. The equilateral triangle To = T(so) is the smallest equilateral triangle 
that can cover every isosceles triangle of perimeter 2. 

It would be very interesting to solve Smith's problem more generally for arbitrary 
triangular covers: find the size of the smallest triangle similar to a given triangle that 
can accommodate every triangle of perimeter two. This is likely to be difficult. 

Smith's problem can also be generalized in a different direction. For each n ? 2 let 
sn be the side of the smallest equilateral triangle that can accommodate every closed 
polygonal path of n segments and length two (so that S2 = 1, S3 = 2/nm0 1.00285, 
etc.). The precise determination of s,, for n ? 4 appears very difficult, but it is easy to 
see that the sequence (Sn) increases to the limit 23 /5/T 1.10266. Since any closed 
curve of length two surely lies in the disk of radius one whose center is any point of 
the curve and consequently in an equilateral triangle of side 2F3, the sequence (Sn) is 
surely bounded. (Indeed, every closed curve of length two lies in some disk of 
diameter one (see Wetzel [10], Chakerian and Klamkin [1]) and consequently in an 
equilateral triangle of side i3.) 

THEOREM 6. For each n = 2,3,4,..., sn+1 ? s, and lim(s) = 2F/3/T. 

Proof. The bounded sequence (Sn) is clearly increasing (because each n-segment 
closed polygonal path of length two becomes an (n + 1)-segment polygonal path of 
length two when a new vertex is inserted into any edge), and consequently it 
converges, say to so. Writing r,, for the regular n-gon of perimeter two with center at 
a point P, and writing c for the circle of circumference two having the same center, 
we recall that r,1 -> c in the sense of the Hausdorff metric. Since the side of the 
equilateral triangle whose inscribed circle has circumference two is 2F3/1-g, it follows 
that so ? 22/F31-. On the other hand, it is a consequence of an inequality proved by 
Eggleston [3] that an arbitrary triangle can accommodate every closed curve whose 
length is the same as the circumference of its inscribed circle (see Wetzel [8], [9]; 
Chakerian and Klamkin [1]). So so < 2F/3/1T. 

Smith [7] makes unsupported assertions about a variety of other covering problems. 
He declares, for example, that the smallest equilateral triangle that can accommodate 
every triangle of diameter 1 has side (23 Y/3) cos 10? O 1.13716, and he asserts that 
the smallest disk that can cover every triangle of perimeter two has radius 2F3 /9 = 
0.38490. We leave the investigation of these two (correct) claims as exercises for the 
reader. 

There are many similar covering problems in the literature, most of them unsolved 
and seemingly beyond reach. For a glimpse of this literature, see the wonderful survey 
put together by Croft, Falconer, and Guy [2]. 

Acknowledgment. It is a pleasure to acknowledge insightful suggestions by the editor and referees. 
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Proof Without Words: 
The Sum of the Squares of Consecutive Triangular 
Numbers Is Triangular 

2m 2 

t2+ = t4 t9 

t2 + =2 t1 

t~ + = t2- 

NoTE: This is a companion result to the more familiar t +t = 

-ROGER B. NELSEN 

LEWIS & CLARK COLLEGE 

PORTLAND, OR 97219 
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 Fibonacci With a Golden Ring

 KUNG-WEI YANG
 Western Michigan University

 Kalamazoo, MI 49008

 1. Introduction A popular application of linear algebra is to use the matrix

 A = (? 1) (or (1 1)) to derive an explicit formula for the Fibonacci numbers

 (Fo = O, F1 = 1, 1, 2,3,5,8,13,..., Fn+2 =IFi + 1 + F..) in terms of the golden ratio
 0 = (1 + V5)/2 and its conjugate (k = (1 - V5)/2 (e.g., [4, p. 252]). We would like to
 show that if you play with the matrix A a little, adding, subtracting, multiplying, and
 exponentiating, you will soon find yourself in the higher domain 74 A] and rewarded
 with a spectacular view of much of the beautiful Fibonacci landscape, instead of just
 one formula. From there, you will be able to see a unified proof of a number of
 familiar Fibonacci identities, such as

 Fgcd( in, n) = gcd( F,1, F;),

 and

 FlFt n+ p-F,- + F; = (1)P(F Fn-F;11F,_),

 and some not-so-familiar ones, like

 Fin + Fin+r + Fin?+2r + + F))I+)I)4

 =1+ (1)r Lr [F -F + (1) r(F, -F )] 1 + (1) r-Lr )7 in1+ (n,+1) r t + T1+1 ) )1 - Ftr

 You will also find that, under an isomorphism between the ring Z[ c] and the ring of
 generalized Fibonacci sequences (see Section 3), the Fibonacci sequence and the
 Lucas sequence (Lo = 2, L1 = 1,3,4,7, 11, 18,29,...) correspond to 1 and V5, re-
 spectively.

 2. Golden matrix ring The simplest ring generated by the matrix A is Z[ A], the
 ring of polynomials in A with integer coefficients. In Z[ A], A2 - A - I = 0 because
 the characteristic polynomial of A is det(XI - A) = - X - 1 (which is also the

 characteristic polynomial of the Fibonacci recurrence relation F, +2 = F,;1 + F;,).
 Since 4 is the positive root of the polynomial 02 _ 0- 1 = 0, Z[ A] and Z[ 4] are
 isomorphic under the eigenvalue map X: Z[ A] -> Z[ 4)] determined by X( A) = 4) and

 The interesting ring 4[ 4] is fully discussed in the classic An Introduction to the
 Theory of Numbers, by Hardy and Wright [2]. We know:

 i. the ring Z[ 4] is a Euclidean domain;
 ii. the units of Z[Zk] are the numbers + 4> ? ' (n = 0, 1, 2,...);
 iii. the primes of Z[ 4] are (i) VU, (ii) the rational primes 5n + 2, (iii) the factors

 (a + b4) of rational primes 5n + 1 (and the associates of these numbers).
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 By the isomorphism X, Z[ A] shares the same properties. In particular, the units of
 Z[ A] are the matrices +A + ' (n = 0, 1, 2,. .. ), and the prime corresponding to F is
 - I + 2 A. It is natural to call Z[ A] the golden mnatrix ring.

 When there is no danger of confusion, we will identify al with a, omitting the

 symbol I. The conjugate of A = (? 1) is A -A' = (1 Therefore,

 AA =-I, and A +A = I. The conjugate of a + bA is a + bA. Conjugation is an
 automorphism. Mimicking the terminology for the complex numbers, we will call b
 the golden part of (a + bA), and denote it by V(a + bA) = b. It is obvious that

 S': Z[ A] -> Z is a linear map. The norm of a + bA is defined to be N(a + bA) =
 (a + bA)(a + bA) = a2 + ab-b2. Note that N(a + bA) = det(aI + bA) =

 det(a b b and so the norm map is multiplicative in the sense that
 b a-bJ

 N((a + bA)(a' + b'A)) = N(a + bA) N(a' + b'A).

 3. The ring of generalized Fibonacci sequences Consider the set F of all

 integer sequences {Gn}0=o satisfying the recurrence relation G?+2 = G +1 + G", re-
 gardless of the initial conditions. A. F. Horadam [3] calls such sequences generalized

 Fibonacci sequences. Observe that F is an abelian group under the addition {G,,) +
 {Hn) = {G(, + H,). Define the matrix map X: F -> Z[ A] by

 ({Gn} ) = (G1 - GO) I + Go A.

 X is clearly a group homomorphism. Furthermore, by a simple induction (using
 A2 = A +I),we have

 Gn1 + Gn A = A ({G,f}) (1)

 Consequently,

 GI, = V( Ane({G,,}))). (2)
 Define the sequence map SY: Z[ A] -> F by

 5(a + bA) = {( A'"(a + bA))}.

 Then 5" is also a group homomorphism, 5Y(,0{Gn})) = {G,,), and O(Y(a + bA)) =
 (a + bA). Thus, XF and 5" form an inverse pair of group isomorphisms. We may
 now transfer the multiplicative structure of Z[ A] to F via X4' and Y9. We define
 {G,I}{H,1) =Y(Q({G,}),1({QHn})) and denote it by {(GH )n}. With this multiplication, F
 becomes a ring, and the maps X': F -> Z[ A] and 5": Z[ A] -> F are isomorphisms of
 rings, and all previously defined notions become operational in F. Here are two
 familiar sequences:

 { F,,} =Y( I) = {-( A"l))

 is the Fibonacci sequence, and

 {Ln} =5Y(-I+2A)

 is the Lucas sequence. Thus, under the isomorphism X o F: -> Z[ 44 the Fibonacci
 sequence corresponds to 1, and the Lucas sequence to V5. The following special case
 of (1) is well-known:
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 4. Extensions and applications The isomorphisms just discussed lead easily to
 various properties of the Fibonacci sequence.

 Negative Indices. Because N( A) = det( ? = - 1, A is a unit. Thus identity (1)
 and hence also (2) and (3) are easily seen to hold for negative exponents and indices
 (... -3,2,-1, 1, Fo = O, F, = 1, 1, 2, 3,. Indeed, for all n,

 F, =(-1) 'Fn

 because

 F-,l ='( A-n) =&'(Fn_l + F1 A)'1 =,((FI_l + Fn A/N( Al)) = (-1)1- F11.

 Divisors. By (3), we have that

 A - Am(FP_1 + Fp A)l = i ( )(Fp)'(rZ, )l An

 Applying (2), we get

 .n

 G,,+l1 ( Fp )(Fp_ Z
 i=O I

 Letting {Gn) be the Fibonacci sequence {F,;}, setting in = 0, and noting that Fo = 0,
 we obtain

 Fn Fp E( ) ( Fp) (F,- )_ Fi )

 From this identity we immediately deduce:

 If d divides n, then Fc divides F,.

 If d = gcd(m, n), then there exist integers x and y such that mx + ny = d. Express-
 ing A inx+ y = Ad in the form

 ( F,71- + SF,,, A)(F,l + TF;, A) = (Fd_l + Fd A),

 where S and T are integers, and comparing the golden parts, we see that Fd is a
 linear combination of F,,, and Fn. This proves that

 Fgcd n, n) = gcd( F1$ F;l).

 Further Identities. Many Fibonacci identities can be given routine, uniform proofs
 using (2). For instance, the identity

 Fn + F?, = L,
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 follows from

 Fl1 + FN+ =V( Atl- + An+') =V(A`2(A-1 + A)) =V( An(- 1 + 2 A)) = Ln.

 Similarly the identity

 Ln-1 L,J+1 = 5FI,

 follows from

 L,_ + Ln+ = V(An-1 (-1 + 2 A) + A''+1 (-1 + 2 A))

 =?4(An(A-1 + A)(-1 + 2A))= 5FI.

 In addition, if we apply 9' to Fn1 + Fn A = An, we get Fn1 + F,, c = 4). Conjuga-
 tion gives Fn1 + Fn =4n. Hence,

 F5 = (bn - o).

 Finally, if we apply X to

 An + An= F, _ 1 I + Fl, A + F,ll I + Fn A = F,ll I + Fn A + F,l _1 I + Fn(I I-A)

 = (Fn1 + F,l+,)I = L, I,
 we obtain

 Ln= ' + 'p)*

 Products. Returning to the product of generalized Fibonacci sequences, we see
 that

 (GH )m7+n = Giii_1 Hn + GIn1HI?+1

 because

 ( GH ))71+)1 '( A'n t({ Gn1}),({ Hn})) = ((Grn_1 + G,I A)( Hn-1 + H,l A))
 = Hfl +G nH,lAJ

 Substituting F in place of G, G in place of H, and +p in place of m gives

 G+,P = FP_Gn + FpGn+l and G_,+n = F-P-1Gn + F_Gn+1

 Replacing F ,_ by (- 1)'+1F,, in this last identity gives (-1)PG_p+ = Fp +,1 -
 Fp Gi + 1, Thus (because F,, - 1 + F,1 + 1 = L),

 Gp+n= LPG,- 1) PG_P+-

 Similarly,

 H, +1 = L, H, 1-(-1) H -_ + I1

 ( Hi\(HP L,,) ( Hl C
 This shows that ()p L)1 ~ l Taking the determi-
 nant, we obtain L lH + /

 Hn Gn+p-H,1?+p G, =(-1) p (H, - p Gn -H, Gn - p
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 A Link to Lucas Numbers. We close with the not-so-familiar identity mentioned in
 the introduction.

 ARITHMETIC FIBONACCI SUM. Let {GC,) be a generalized Fibonacci sequence. If
 m, n,r are integers with n > 0, r 0 0, then

 Gin + Gnl+r + Gm?+2r + *C + G,71? + n r

 =1+(-_l1) r _ L [c,,-G,?1?(,l)r + (-1)(G rG - _

 where Ln is the n-th Lucas number.

 Proof. By (2), the identity follows from the relation

 Ain + AIl+r + Aln+2 r- + Ain+nr

 1 r _L[ AI?l Atl+(I?l)r + (_1)r( Ain+i r - Al? -r)]
 1+(-1) r

 which in turn follows from

 A" + A`+ +r +A An+2 r + --- +Atn+n r = A1 ( A("'l ) - I )(Ar-I

 and

 (Ar _1)((-A) r-I) = (1 + (-1) Lr) I.

 We can go on proving Fibonacci identities this way indefinitely: Find an algebraic
 relation in A; apply (2). But this is really just old wine (the "umbral method" (see [1],
 p. 395)) in new bottles (the golden matrix ring).

 Acknowledgment. I wish to thank the editor, the referees, and Catherine Yang for their helpful
 suggestions.
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Proof Without Words: 
The Distributive Property of the Triple Scalar Product 

A (C X D) + B X D) =(A + B) (C X D) 

B 

.+ ...... A= 

D? ........ 

c c 

AB B 

A A 

C C 

A?X A?B 

D D 
c c 

-CONSTANCE C. EDWARDS AND PRASHANT S. SANSGIRY 
COASTAL CAROLINA UNIVERSITY 

CONWAY, SC 29526 
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How (Knot?) to Play Hangman 

HARVEY SCHMIDT, JR. 
Lewis & Clark College 

Portland, OR 97219 

Introduction The parlor game Hangman is a guessing game involving two players, 
the poser (P) and the guesser (G). P poses an unknown word (there may be house 
rules on foreign words, proper names, etc.) to G, revealing only the number of (not 
necessarily distinct) letters in the word. G then attempts to uncover the word by 
suggesting letters to P. If G correctly identifies a letter in the word, then P exposes all 
occurrences of the letter and their positions; if G suggests a letter not contained in the 
word, then G accrues an error. The game continues until either the unknown word is 
identified or G exceeds the allowable number of errors and thus is hanged. 

Traditionally, we consider the body of the potential victim (G) as composed of 
seven parts: a head, a neck, two arms, a midsection, and two legs. If we add (draw) 
one of these body parts for each error accrued, then G will be hanged after making 
seven errors. If, say, P poses the word unlucky and G, attempting to identify the 
vowels first, starts with the eight guesses a, e, i, o, u, t, h, and rn, then the game at 
this stage can be described by the Figure, and G would be one error away from being 
hanged. 

7JN (D/unknown words: u nji -. 

errors: a, e, i, o, t, h 

IGALLOWSI 
FIGURE 1 

An unlucky victim 

What is a reasonable mathematical model for this game? In an actual game, P is 
constrained to submit a word from an agreed-upon dictionary, so not all combinations 
and arrangements of the 26 letters are allowable. Moreover, G has access to the same 
dictionary, and partial information about the word may inform successive guesses. 
This means, in "real life," that not all words posed by P are equally likely, and that 
successive guesses by G are not independent. 

An urn model To abstract this game by removing the "human" aspect and hence 
maybe some of the fun! we assume that letters are selected (guessed) at random 
from a fixed n-letter alphabet A = {a,, a2, . .., a,. The other fixed parameters, known 
to both players, are the allowable number k of errors (incorrect guesses), 1 < k < n, 
and the length r of the unknown word. Since P must expose all instances of identified 
letters in their proper positions, the order of the letters and the number of times each 
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appears is immaterial. Thus, for our purposes a word is determined solely by the 
particular distinct letters in the word. Consequently, a word with t distinct letters, 
1 < t < n, will be represented simply by 

wt = ai,ai, ai, (il < i2 < ... < it) 

This abstraction suggests an urn model for Hangman. The urn contains n balls, of 
which t are white (correct guesses) and n - t are black (incorrect guesses). Instead of 
guessing letters, G now chooses balls sequentially from the urn until either t white 
balls or k black balls have been chosen. G wins in the former case and is hanged in 
the latter case. 

If we let P be the probability that the t-th white ball is drawn on the (t +j)-th 
draw, then it is easy to see that 

{ t 8tn-tA {~~~~t+j-1 
Vt- I} t!(n -t)!(t +j - 1)!_ J 

pi- j n n -n-t-j+ 1 (t- 1)!j!n! (n) 

Letting P(wt) be the probability that G uncovers the word wt before the k-th 
incorrect guess, we have the following formula. (The latter equality is due to a well 
known combinatorial identity (see, e.g., [2], (56)). 

THEOREM 1. With notation as described, 

kt+k- Ii 

P(Wt)=E pj= 
j=O = 

For the poser P, the optimal strategy is to pose a word for which the probability 
P(wt) is minimal. In the earlier example, with fixed values n = 26 and k = 7, a quick 
glance at Table 1, which gives the values of P(w) for 1 < t < n - k, reveals a striking 
symmetry, centered at t = 10, which allows the poser P to select a word of optimal 
length. 

Although it may not be immediately apparent from Table 1 or the expression for 
P(wt) in Theorem 1, the precise symmetry illustrated in the table is captured in 
Theorem 2. (The notations j I and [ 1 represent the floor and ceiling functions.) 

TABLE 1. Winning Probabilities for G 

t P(Wt) t P(Wt) 

1 0.269307769 11 0.001601831 
2 0.086153846 12 0.001922197 
3 0.032307692 13 0.002608696 
4 0.014046823 14 0.004013378 
5 0.007023411 15 0.007023411 
6 0.004013378 16 0.014046823 
7 0.002608696 17 0.032307692 
8 0.001922197 18 0.086153846 
9 0.001601831 19 0.269307769 

10 0.001507605 

THEOREM 2. 

(i) For k + t < n and 1 < t < l(n-k)/2], P(w) =P(w,-k-t+l) 
(ii) The minimum value of P(w7) occurs when t = [(n - k)/2]. 
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Proof. Both assertions follow directly from the observation that the expression for 
P(w,) can be reorganized to isolate the parameter t: 

(k - I n )( 
{n {n +k- I8 
(t t+ k-1 I 

For a fixed n and k, the values of the binomial coefficient in the denominator on the 
right side of this equality are well known to be symmetric about the closest integer to 
(n - k + 1)/2, with the largest value occurring when t = [n( - k ) /2]. The proof is 
complete. 

Coda and disclaimer As anyone who has played this game in real life can attest, 
this analysis is not very realistic! The illustrating example, with parameters n = 26 and 
k = 7, suggests that the poser should select a word with 10 distinct letters. In this case, 
if G guesses randomly, then G's probability of winning is roughly 0.0015. Yet most 
experienced players succeed at uncovering a proposed word much more often than 
once in a thousand attempts. Indeed, who would find interesting a parlor game with 
such low odds of success? Moreover, 10-letter words are not all that common in the 
English language. (How many can you write in 5 minutes? How many are there in this 
article?) Finally, with the parameters given in the example above, intuition might 
suggest that words with fewer than 10 letters would present a greater challenge 
because of the difficulty in establishing patterns. 

What this model lacks is any notion of "structured" guessing, based upon knowl- 
edge of the dictionary and the frequency of particular combinations of letters. Some 
algorithm for assigning relative or conditional probabilities after each successful 
identification of a letter in the proposed word would seem to address some of this 
deficiency. Nevertheless, P can select, for example, obscure words with either unusual 
letter combinations or all-too-common letter combinations, leaving G unable to 
eliminate sufficient combinations of letters as impossible. In fact, knowing that the last 
two letters of -a 3-letter word are a and t provides no assurance that G will not be 
hanged in a game allowing only seven errors. 

Appendix: A footnote on recursion Because the binomial coefficient )t+ 1) 

appearing in the expression for P(w,) in Theorem 1 has various recursion properties, 
it is also possible to analyze P(wt) recursively. In order to develop recursion 
expressions for P(wt), we follow Cohen ([1]) and adopt the notation 

Kt) (t +i-1) (2) 

This expression satisfies many combinatorial identities. The following well-known 
examples follow directly from (2): 

(i ) ( t )+ (i- I ); (3) 

(3) Kt tKi ) +1Kt 4 
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If we let Pjk, t) = P(wt), in order to display all the parameters simultaneously, 
then using the identities above we may rewrite Pr(k, t) as 

P,I(k,t)= i [by(2)] 

( \t+- [by(5)] 

k + t<\ 
= 1^ [by (4)]. (6) 

With (6) in hand, straightforward algebra leads to the following natural analogues of 
familiar recursion expressions for the binomial coefficients: 

P,,( ~ ~ k, t I 
k) (k () =t - ,(k ) 

P11( + l,t) = I ()= (k k k P,(k t) 

Pj(k, t 1) = ? ( ==\lP,k ( k, t ); 

t t~- 

and finally 

k + ) t kkt7) Kk-1) 
P 
_(k 

t) = t) 
= k \ + [by(2)] 

k-1 kt k-l / 

t-k t- I \ k / k t- Ik l 

k t - I k -( tn 

= tr-t 18Pjlk, t -1) + k _ l P,I(k -1, t). 

REFERENCES 
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GEORGE T. GILBERT, Editor 
Texas Christian University 

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors 
Texas Christian University 

Proposals 
To be considered for publication, solutions 
should be received by September 1, 1997. 

1519. Proposed by Sam Northshield, SUNY, Plattsburgh, New York. 

Given a sequence (a,), 1, let Aoj = 1 and 

A'j= f1 (I +jak) 

for positive i and nonnegative j. What sequences (a,,) satisfy A,j = A,. for all 
nonnegative i and j? 

1520. Proposed by Victor Kutsenok, St. Francis College, Fort WVayne, Incliana. 

(a) Given points A and B in the plane, describe the set of points C in the plane 
such that A, B, and C form a triangle satisfying am, = bmb, where a = BC, b = AC, 
and ma and mb are the lengths of the medians from A and B respectively. 

(b) Given points A and B in the plane, describe the set of points C in the plane 
such that A, B, and C form a triangle satisfying ala = blb, where 1, and lb are the 
lengths of the angle bisectors from A and B respectively. 

1521. Proposed by Wu Wei Chao, He Nan Normnal University, Xin. Xiang City, He 
Nan Province, China. 

Let a function f: R --> R satisfy 

f(X ti - Y) =( X [fi( Xl-1 +f( X) nl- 2f( Y) + . +Ae Xf( Y) i-2 +A Y) )1 - 1 

Prove that f(lr) = rf(x) for all rational r and all real x. 

We invite readers to submit problems believed to be n.ew and appealing to students and teachers of 
advanced unclergraduate mathematics. Proposals mnust, in general, be accompanied by sol.utions and by any 
bibliographical information that tvill assist the editors and referees. A problem submitted ai.s a Quickie 
should have an unexpected, succinct solution. 

Solutions should be tvritten in a .style appropriate for this lMAGAZINE. Each solbution. should begin oni a 
separate sheet containing the solver's name and fill address. 

Solutions and netv proposals shotuld be mailed to George T. Gilbert, Problems Editor; Departmenent of 
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or nmailed electronically 
(ideally as a LATEX file) to g.gilbert@tcu.ecdu. Readers wvho use e-mail shotuld also provicle an e-mail 
address. 
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1522. Proposed by Bogdan Kotkowski, Kent State University, Tuscarawas Canmpus, 
New Philaclelphia, Ohio. 

Prove that if 

cos2a + cos2 ,B + cos2 y + 2cos a cos , cos y = I 
and two of the expressions 

cos a cos + cos y, cos 83cos y + cos a, cos y cos a + cos/ 
are positive, then the third expression is also. Moreover, if a, f, and y are positive 
numbers less than 7T, then a + ,B + y = IT. 

1523. Proposed by Emneric Deutsch, Polytechnic University, Brooklyn, New York. 
Let mn and n be positive integers. Show that the Maclaurin series expansion of 

2 1-rnx (1 . 3( / nx3__ sin arcsin 2 ( x 

has integer coefficients. 

Quickies 
Answers to the Quickies are on page 150 
Q862. Proposed by John Bonomo, St. Mary's University of Minnesota, Winona, 
Minnesota. 

In AAOCOA,, below, all of the 2n triangles A,-lCjAj and C,-1A,-1C,, i= 
1, 2,..., n, have the same area. Find A,,C,,/A,,CO. 

All 

A ,Cu 

A4, - \ C, 

Q863. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada. 

Prove that 

1k ab + ( a, ? bi ) 2 a, bi, 

where the ai and bi are real. Determine when equality holds. 
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Q864. Proposed by Kung-Wei Yang, Western Michigan University, KalamaZoo, 
Michigan. 

For every real 2 X 2 matrix A, show that it is possible to find a matrix B and a 
symmetric matrix C for which A = B + C, det A = det B + det C, and det B ? 0 ? 
det C. 

Solutions 

A Primality Condition April 1996 

1494. Proposed by Emneric Deutsch, Polytechnic University, Brooklyn, New York, 
and Ira M. Gessel, Brandeis University, Walthan, Massachusetts. 

Let n ? 2 be a positive integer. Prove that n is prime if and only if (1) ( )k 

(mod n) for k = 0, I.., n - 1. 

I. Solution by Helen M. Marston, Princeton, New Jersey. 
If n is prime, then every i, 1 < i < n - 1, has an inverse i- (mod n). Therefore, 

for 0 < k < n - 1, 

(k )= ' t j - (n - i)i ) (mod n). 

If n is composite, let p be the smallest prime factor of n. Then (-1) '9 - 

(mod n) as above. But 

1 n ) 1 n ( _ =1(_)pi n( 1) \ (mod n) 

since n/p # 0 (mod n). 

II. Solution by Stephen Noltie, Ohio University-Lancaster, Lancaster, Ohio. 
Suppose first that n is prime. For k = 1, 2,..., n - 1, the denominator of ( ) = 

n(n - 1) *. (n - (k - 1))/k! is not divisible by n, hence the integer ( ) 0 (mod n). 

Clearly (%l) = 1-(-1)? (mod n). For k = 1, 2,. . ., n-1, 

(k ) k) (k - l) - k - lI mo } 

and ( 1) ( _k (mod n) follows by induction. 
On the other hand, if n is not prime, let p be a prime factor of n. Suppose pa is 

the largest power of p dividing n. Then (") is divisible by p but not by pa 
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Therefore, 

(P) (p - )+ (p )7 0 (mod n) . 

It follows that ( 1)1 -i (mod n) and ( 1 ) (- 1) P (mod n) cannot both be 
true. 

Also .solved by Ricardclo Alfaro, Pablo Armnas (student, Argentinla), Roy Barbar-a (Lebanion), Marc A. 
Brodie, John Christopher, Curtis Coker, L. L. Foster, Zachar-y Franco, E. C. and S. A. Greenlspan, 
Jen'nifer Hyncdhnan (Canada), Kee-Wai Laii (Honig Kong), Taimds LenLgyel, AMarUo LeVan, Lester Levy, 
Jamies T. Lewvis, Hiren Maharaj, David E. MA7anies, Kandasamny Muthu7vel, Josh Nichols-Barrer (student), 
Joel Rosenberg, Ha-rvey Schmidt, Jr., Lawrenice Soere, Alain. H. Stein, Ajaj A. Tarabacy and Bassein B. 
Ghalayinii (Lebanon), Michael Vowe (Swvitzerland), Monite J. Zerget-, David Zhu.i, Patld J. Zwier, aind the 
proposer. Thiere were twso incomplete and two incorrect s(luttionls. 

Chord in an Inscribed Quadrilateral April 1996 

1495. Proposed by Achilleas Sinefakopoulos, student, University of Athens, Greece. 

Let angles B and C of l\ ABC be acute, and let K be a point on arc BC of its 
circumcircle. Let L be the intersection of chords AK and BC. The feet of the 
perpendiculars from L to AB and to AC are M and N, respectively. Prove that if the 
area of l\ ABC equals that of quadrilateral AMKN, then AK bisects angle A. 

Solution by Michael Vowe, Therwil, Switz.erland. 
The problem is incorrect as stated. Chord AK may be either the angle bisector of 

angle A or a diameter of the circumcircle of l\ ABC. Furthermore, we assume M is 
on segment AB and N is on segment AC, which may have been ambiguous in the 
problem statement. 

Let [ABC] denote the area of l\ ABC and [ AMKN] denote the area of quadrilat- 
eral AMKN. Let al = i BAK, a2 = i CAK, and R be the radius of the circumcircle 
of l ABC. 
Since ABKC is a cyclic quadrilateral, Ptolemy's theorem implies 

AK BC =AB CK + AC * BK, 
hence 

AK -2R sin( al + a2) =AB *2R sin a2 + AC *2R sin al, 

B L C 

K 
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and 

AK= AB sin a2+ AC sin a1l AB sin a2+ AC sin a1 
sin(a1 + a2) sin a1 Cos a2+ sin a2 cos 1 

We also have 

[ABC] = [ABL] + [ACL] = 2 AL( AB sin a1 + AC sin a2) 

and 

[AMKN] = [AMK] + [ANK] = - AK(AM sin a1 +AN sin a2) 
1~~~~~ 

= -AK AL(sin a1 cos a1 + sin a2 cos a2 

1 AB sin a2+ AC sin a1 
- 

_ s.n a1 cos a2 + sin a2 cos a1AL(sin a1 cos a1 + sin a2 CoS a2) 2 sin al1 cos at2+ sin ?a2 COS a, 

After some simple algebra, we see that [ ABC] = [ AMKN] if and only if 

(AB cos a2- AC cos aj)(sin2 a1 - sin2 a2) = 0. 

If the second factor is 0, then a1 = a2 and AK bisects angle A. If the first factor is 0, 
then AB/cos a, = AC/cos a2, hence the perpendicular to AB through B, the 
perpendicular to AC through C, and AK are concurrent. It follows that K is the 
point of concurrency, so that AK is a diameter of the circumcircle of A ABC. 

Also solved by Roy Barbara (Lebanon) and Victor Kutsenok. There were three solutions that missed the 
second possibility, as did, regrettably, the editors. 

A Differential Equation April 1996 

1496. Proposed by Murray S. Klamkin, University of Alberta, Eclmonton, Alberta, 
Canada. 

Find a solution to the differential equation d2y/dx2 =-kx/y4, k > 0, other than 
one of the form y = ax3"5 

I. Solution by Hongwei Chen, Christopher Newport University, Newport News, 
Virginia. 

The given differential equation is a special case of the Emden-Fowler equation 
d2y/dx2 = Ax" y "'. All possible solvable cases are given in A. D. Polyanin and V. F. 
Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC 
Press, 1995, 241-250. 

We claim that the general solution to the differential equation is given in the 
parametric form 

2 /~~Ic -1/ 

-1 X = (C2 ? f( 3t3 + C< dt)v 

ye = t C2 a arbi tr-3+ Ccon dtants 

where t is a parameter, C., and C2 are arbitrary constants. 
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The transformation x = 1/s, y = t(s)/s changes the equation into 

d2t 1 d2y - 

dS2 s3 dX2 

By using the substitution 

w(t) = dt/ds, 

this equation is reduced to the first order equation 

dw dw/ds d2t/ds2 _ kt-4 
dt dt/ds w w 

Integrate to obtain 

W2 tk-3+c, 

where C1 is a constant. Thus, 

dt +2k -3 1/2 

so that 

_+1 ( 23k t-3+c / dt =ds, 

and therefore 

s =C2 ? +t-3+C) dt, 

where C2 is an additional constant. Hence, the general solution of the original 
equation is given by 

2k -1/2~~- 
X = C2 _ | _3t-3 + Cl) dt) 

y =t(C2 ? t-3+ < dt 

Setting C1 = 0 leads to 

X= (C2? 2t5k t52 

so that 

t= (C+ 25kx-) 

and 

25k )2/5 
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II. Solution by the proposer. 
Setting y = xt(x), we get 

24dt 3dt -k 

Multiplying by the integrating factor 2dt/dx, we get 

d { dt 
2 

_ d 2k 
dxA dx J CI x 3t3 

Integrating and taking square roots yields 

2k 
dt 3t3_+_C 
dx =- x2 

As in the first solution above, separation of variables leads to the parametric solution, 
and setting C1 = 0 allows us to perform the integral to obtain an analytic solution. 

There tvas one inzcomplete solution. 

Cardinality of Sets April 1996 

1497. Proposed by Miha'ly Bencze, Brasou, Romania. 

Given positive real numbers a1,. , aM, let A1,..., AM be sets of nonnegative 
integers such that OEAk and IAkn{1,2,.. .,?nl akrn for k=l. m and n= 
1, 2, . Prove that 

,Ak n {1, 2,., n 1-H( -ak)n, 
k=i1= 

where EmU1 Ak = {a, + + am: ak E Ak) 

Solution by the proposer. 
Denote IAk n {1, 2, . ., nl I by Ak(n). We proceed by induction on rm, the case 

m = 1 being given. We next prove the case m = 2. Let 

0=ro <r1 <r2< .. < rA,(,) <?n 

be in A1. For i=O,..., Al(n)-1 and every s in A2n {1,2,..., ri+I-r,-1}, ri + s 
gives an element of A1 + A2 which is greater than ri, but less than ri +II For each i, 
there are at least a2(ri +I - ri - 1) such elements. Similarly, there are at least 
a2(n-rA,(,,)) elements of (A1 + A2) n {1, 2,. . ., n} that exceed rA (.). We conclude 
that 

(A1 + A2) n {1,2,..., nIl 2 Al(n) + a2(rl-1) + a2(r2-rr-1) 

+ ** + a2(rA(n) )-rA,(,,) - 1) + a2(n -rA,(,)) 

= (1- a2) Al(n) + a2n ? a1(1 - a2)n + a2n 

= (1 -(1- a1)(1 - a2))n. 
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To prove the general case, we simply note that 

k=1 A,n{j1,2, - }|(n Ak+Am.+ )I {1,2,...,rn} 

t1 1 (I1 ak) n. 

Closed Forms of Two Sums April 1996 

1498. Proposed by J. C. Binz, University of Bern, Switzerland. 

For n a positive integer, express 

E ( rj)(r- 1)2n-2 and EJ( j)ri(r-1)2n-2j 
j20 J j20 J 

in closed form. 

Solution by Joel Rosenberg, University of Michigan, Ann Arbor, Michigan. 
We show that 

E (nJj l2n-2j r (r2 - (1 ) 

=(r n)l 
_ 

(-1)Il+1 

and 

r j( nr+n r 2 n r(nr+n+r-1) 

j20 J 

= (nr+r)+ 3 r (r2 -r) + r( ( 1-r) 

r(r-1l (n-l)(rtl+l-(-l)n+) + (n + 1 (rn+1)31 

Let S,i(r) =E,j?o ('?7)ri(r 1)2n-2j and Ti(r) = E1>2j( .lj j)rJ(r- 1)2fl2j. Then 

S ( r) = , ( n-yJ) rj( r-1)2Il-2J 

= (r-1)2E ( (n-) -I )J(r-)2fl-2-2'J 

+ r( r-1)2E (( - 2)(2 1) )r>(r2 r1)2n2J2 

= (r-1)2Sn_(r) +r(r- 1) S 12(r)3 
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so we have a linear recursion for Sj(r). The associated polynomial for this recursion is 

x2_ (r- 1)2X-r(r- 1)2= (x- (r2-r))(x (1 - r)). 

Thus, we can write 

S(r) =(r 2_ )n + (1 _ ) n S(r) 1, S(r) (r _ 1)2, 

and obtain B= r/(r + 1), 8= 1/(r + 1), so 

n j i)r (r) n'l-2j r (r2 r)n+ 1( 

rl1-(-1) nI + 1 
r- + )l r + 

Similarly, we decompose Tj(r) as 

( ) 

T~(r) = J( J)ri(r- 1)2 2J j 

= ()r-1) 2( I j (n )) ) rj(r r1)2n-2-2j 

+r(r-1)2Ej(( 2) ( 1) 2n-2j-2 

- (r -1)2Tn_ 1(r) + r(r- 1)2T2(r) + r(r- 1)2S2(r), 

an inhomogeneous linear recursion. Because the homogeneous part of the recursion is 
the same as that for the SJr), it follows that the Tj1(r) satisfy a homogeneous linear 
recursion with associated polynomial (x - (r2 - r))2(x -(1 -r))2. Therefore, we can 
write Tj(r) = (an + /3)(r2 - r)n + (yn + 8)(1 - r)n, and calculate 

TO(r)= 0 = 0 a+ 14 ,+ 0 y+ I 8 
T1(r) = 0 = (r2-r)>a + (r2-r) ,B + (1-r) y+ (1-r8 
T2(r) = r(r-1)2 = 2(r2-r)2a + (r2-r)24,8 + 2(1-r2) y +(1-r)2 8 
T3(r) =2r(r-1)4 = 3(r2-r)3 a +(r2-r)34,8 + 3(1-r)3 y+(1-r)38. 

The solution to this system is (a, /3, y, 8) = (r/(1 + r)2, r(1 -r)/(1 + r)3, 
r/(1 + r)2, r(r -1)/(1 + r)3). We finally obtain 

ni .j ri) (r -1) 2n-2 

r(nr + n + i-r) 2 r(nr + n + r- 1) 

( + r)3 (r -r) + + r)3 (r 

(n - 1)r11+1 1)n+l) + (n + 1rr1 
=r(r- 1) ,~(-1('+ r1)3 
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Comments. The value at r =-1 in both formulas is obtained by taking the limit. 
Carl Libis uses the recursions for Sn(r) and Tj(r) derived in the above solution to 
prove the formulas by induction. Michael Vowe uses the formula (see page 204 of 
R. L. Graham, D. E. Knuth, and 0. Patashnik, Concrete Mathematics: A Foundation 
for Computer Science, Addison-Wesley, Reading, Massachusetts, 1989) 

( 1+ 1+4z ) 1- V1+4z l+ 

j20 (( 2 ) 
f(z)= (.)i +4 

and its derivative, to quickly obtain the formulas by setting z = r/(r - 1)2. The 
derivation of this identity is similar to, and a bit simpler than, that given in the solution 
above. 

Also solved by E. Sparre Andersen and Mogens Esrom Larsen (Denmark), Kuo-Jye Chen (Taiwan), 
Curtis Coker, J. S. Frame, Carl Libis, Heinz-Jfirgen Seiffert (Gernany), Michael Vowe (Switzerland), and 
the proposer. 

Answers 
Solutions to the Quickies on page 142 

A862. Because A AOC1 An and A AOCO A, share an altitude from AO, we have 

AnC1 = Area(A AOC, A,) 2n- 1 
AnICO Area(AA AoCo A - 2n 

Applying this observation to A A1C2 A, and A AIC1 An, and so forth, we obtain 

A,iC,t AnCI AnC2 A,1Cn 2n-1 2n-3 1 (2n)! 
AnCo AnCo AnC1 AnCn-1 2n 2n-2 2 (n!) 

A863. Let a = (a,,..., a,), b = (b1. bn), and c denote n-dimensional vectors. 
The given inequality will follow from the more general I C 12(a b + lal Ibl) ? 
2(a * c)(b c) by setting c = (1, . . ., 1). Let a, /3, and y denote the angles between a 
and c, between b and c, and between a and b, respectively. The generalized in- 
equality is now equivalent to lal Iblcos y+ lal Ibl 2 21al Ibicos a cos /3, or cos y+ 1 
> 2 cos a cos ,. Since in the trihedral angle a + B 2 y and 2 7-(a + ,B ) y, it 
suffices to show that 

1+cos(a+,8) 22cosacos,8 or 12cos(a-,8). 

Equality holds if and only if a = , and either a + , = y or a + , = 2 7-y. In 
particular, a, b, and c must be linearly dependent if equality holds. 

A864. Letting A = (a b), we have 

det A = ad -bc = ((a +d)2 +(b c)2 -(a-d)2 -(b +c)2) 

a+d b-c a-d b+c 

=dtic - b a + d |+dtib + c d-a 
2 2 2 2 

Thus, we may set B = (a+d/2 bc/2) and C = (a d/2 b +c/2) 
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PAUL J. CAMPBELL, editor 
Beloit College 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for 
this section to call attention to interesting mathematical exposition that occurs outside the 
mainstream of mathematics literature. Readers are invited to suggest items for review to 
the editors. 

Dawson, John W., Jr., Logical Dilemmas: The Life and Work of Kurt Godel, A K Peters, 
1997; xiv + 361 pp, $49.95. ISBN 1-56881-025-3. 

This book is likely to be the definitive biography of G6del, by a mathematical logician who 
catalogued his papers and is co-editor of his collected works. Author Dawson mentions and 
briefly describes G6del's mathematical results but does not try to explain them in detail. 
Readers will be saddened by the details of the mental illness that afflicted G6del for most 
of his life and led to his death. 

P6ppe, Christophe, and Madhusree Mukerjee, Prize mistake: The n-body problem is 
solved-too late, Scientific American 276 (2) (February 1997) 22. Diacu, Florin, The 
solution of the n-body problem, Mathematical Intelligencer 18 (3) (Summer 1996) 66-70. 

The n-body problem in celestial mechanics is: Given initial locations and velocities of ri 
bodies moving under Newton's laws of motion, find functions that describe their locations 
at all future times t. The case n = 2 was solved by Johann Bernoulli in 1710. In 1888, 
Henri Poincare showed that the case n > 3 can include chaotic behavior and that the 
general problem cannot be solved by the method of integrals. Mathematical folklore ever 
since holds that the n-body problem, for n > 3, is unsolvable-or else the problem is 
open-depending on the oral tradition. In fact, as these articles reveal, the case n = 3 was 
solved in 1909, except for initial conditions that may lead to a triple collision. The method 
used does not extend to higher n. However, in 1991, Quidong (Don) Wang, a graduate 
student at the University of Cincinnati, gave a power series solution for the n-body problem, 
except for singularities (including collisions). Perhaps equally surprising, his solution is not 
practical-it "presents only historical interest," says Diacu-because the series solutions 
have very slow convergence. In the meantime, important practical special cases have been 
solved sufficiently accurately to send spacecraft throughout the solar system. 

Stewart, Ian, Mathematical recreations: Crystallography of a golf ball, Scientific American 
276 (2) (February 1997) 96-98. 

A golf ball with dimples flies farther; practicality (avoiding swerve) demands that the 
dimples be placed more or less symmetrically. So, how many dimples, and how to arrange 
them? Numbers from 252 to 500 are found on balls. The maximum finite order of symmetry 
for a group in three dimensions is 120 (the group of the icosahedron or of the icosahedron), 
but most golf balls have lesser symmetry. Readers interested in the distribution of dimples 
on golf balls may also enjoy a paper by R.H. Hardin and N.J.A. Sloane that relates work 
of the "Codemart" team that has investigated "nice" ways of placing points on a sphere: 
Codes (spherical) and designs (experimental), in Different Aspects of Coding Theory, ed. 
A.R. Calderbank, Proc. Sympos. Appl. Math., 50, AMS, 1996, pp. 179-206. 

151 

This content downloaded from 128.187.103.98 on Fri, 30 Oct 2015 06:50:18 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


152 MATHEMATICS MAGAZINE 

Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg, An economics approach to hard 
computational problems, Science 273 (3 January 1997) 51-54. 

Suppose that you have a problem and two algorithms for it that always produce a solution 
but with probabilistic distributions of solution times. How should you apportion your 
computing resources to solve the problem? The naive answer is to devote all the computer 
cycles to the algorithm with shorter expected time, especially if it has the smaller standard 
deviation as well. The authors show that running the two algorithms concurrently but 
independently on a serial processor can reduce both the expected time to solution and its 
standard deviation (which they call "risk"); the key to optimal reduction is the fraction 
of cycles allocated to each algorithm. The same counterintuitive result applies with two 
independent instances of the same algorithm with different random seeds. Generalization of 
the idea produces "computational portfolios" that are "unequivocally preferable to any of 
the component algorithms." The authors apply the idea to the NP-complete graph-coloring 
problem, for which appropriate tuning of the cycle-mix of two independent instances of the 
Brelaz heuristic decreases both expected solution time and its standard deviation by about 
30%. Cooperating algorithms whose expected lengths of time are negatively correlated have 
even better performance and lower risk than independent algorithms. 

Horgan, John, Profile: Ronald L. Graham: Juggling Act, Scientific American 276 (3) 
(March 1997) 28, 30. 

This light profile of one of the gentlest ambassadors for mathematics includes a photo of 
Ron Graham in fool's cap juggling a cauliflower, a red pepper, an eggplant, and (ouch!) a 
pineapple. Perhaps Graham, chief scientist and a manager at AT&T Labs-Research, and 
one of the most respected and beloved of mathematicians, will replace the late Paul Erd6s 
as journalists' favorite "poster boy" for mathematics. 

Luoma, Keith, The truth behind "famous name" mathematics, Mathematical Gazette 80 
(1996), 297, 349-351. 

Mathematicians refer to concepts and results by names that flaunt what they know from 
history. Cramer's rule does not appear in Cramer's works; Horner's method was known to 
earlier Chinese, Pascal's triangle to Chinese and to Indians before them; and Simpson's rule 
and Taylor series appear earlier in the work of James Gregory. Such false attributions are 
examples of Stigler's Law of Eponymy, which says that no result is named after the person 
who first discovered it. Of course, the Law applies also to itself, according to its namesake 
Steven Stigler (University of Chicago). Maybe it's time, though, for the International 
Mathematical Union to appoint a commission to recommend more apt naming of named 
theorems, and for mathematicians thereafter to amend their practice accordingly. 

Borwein, Jonathan M., et al. (eds), Proceedings of the Organic Mathematics Workshop. 
Hypertext at http://www.cecm.sfu.ca/organics/contents.html; also to be available in 
printed form from the Canadian Mathematical Society. 

The organizers of the Organic Mathematics Workshop (December, 1995, at Simon Fraser 
University) wanted to create an environment for experimental mathematics that would 
use the latest technology. The conference papers are available on the World Wide Web 
in a plethora of electronic forms and contain links at suitable places to animations and 
computer algebra code. Readers can annotate the papers and contribute their own articles. 
The resulting hypertext has papers by David H. Bailey et al. (how to compute one billion 
digits of pi), Joe Buhler and Ron Graham (on juggling), Jeff Lagarias (the 3x + 1 problem 
and generalizations), Andrew Odlyzko (zeros of the zeta function), Stan Wagon (visualizing 
differential equations), and others. 
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57th Annual William Lowell Putnam Mathematical 
Competition 

A-1 Find the least number A such that for any two squares of combined area 1, a rectangle 
of area A exists such that the two squares can be packed into that rectangle (without the 
interiors of the squares overlapping). You may assume that the sides of the squares will be 
parallel to the sides of the rectangle. 

Answer. We can always accommodate the two squares inside a rectangle of area A = 

(1+XV)/2. 
Solution 1. Suppose the squares have sides of lengths x and y. We may suppose without 
loss of generality that x > y > 0. Place the squares so that their bases lie on the x-axis with 
their lower right corners at (x, 0) and (x + y, 0). We wish to maximize x(x + y) subject to 
the condition that x2 + y2 = 1. Equivalently, we must find the maximum value of A(x) = 
x (x + 1x2)for V/2 < x < 1. 
To find the critical points, we set the derivative equal to zero: 

dA(x) =2x+ 1-22+ 0. 
dx V 1- X2 

This yields 4X2 = 2 + , 4y2 = 2 - V, and 4xy = ; at this point V2/2 < x < 1 
and A has the value x2 + xy = (2 + V2-)/4 + V'_/4 = (1 + V2)/2. Since this is greater 
than 1 (the value of A(x) at the endpoints), it must be the maximum value. 

Solution 2. Let x cos 0 and y = sin 0, with 0 < 0 < 7r/2. Then 

x(x + y) = cos 0 (cos 0 + sin f) = v'_ cos0 (I cos 0 + X sin ) 

= X cos 0 sin (7r/4 + 0) = > (sin (20 + 7r/4) + sin(7r/4)), 

which is maximal for 20 +w/4 = 7r/2. For this value of 0, we have x > y, so the maximum 
value we desire is (1 + sin (7r/4)) /Vf = (1 + V2-)/2. 

A-2 Let Cl and C2 be circles whose centers are 10 units apart and whose radii are 1 and 
3. Find, with proof, the locus of all points M for which there exist points X on Cl and Y 
on C2 such that M is the midpoint of the line segment XY. 

Solution. Take the centers of Cl, C2 to be 01 = (-5,0 ), 02 = (5,0 ). The set comprises 
the closed annulus bounded by circles with center 0 = (0, 0) and radii 1 and 2. 
The following construction (see the left-hand figure) is possible just if M is in the set. The 

circle with center M and radius 1/2 cuts the circle with center 0 and radius 3/2 at P. (In 
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general, there are two such P; select either.) Draw radii 01X, 02Y parallel to PM, OP 
respectively. Then M is the midpoint of XY, because 01, P, Y are collinear, 010 = 002, 

and 01P = PY. 

To see that X, Y do not exist for points not in the annulus, let N be such a point. (See the 
right-hand figure.) Let X traverse the circle Cl. Then the locus of Y, where X, N, Y are 
collinear and XN = NY, is a circle of radius 1 and center N2, where 02N2 is parallel 
to ON and twice its length. This circle is either entirely interior or entirely exterior to C2, 
according as N is inside or outside the annulus. 

A-3 Suppose that each of twenty students has made a choice of anywhere from zero to six 
courses from a total of six courses offered. Prove or disprove: There are five students and 
two courses such that all five have chosen both courses or all five have chosen neither. 

Solution. The 6 x 20 incidence matrix shown below, made so that the (6) = 20 vertical 
triples (of l's or of O's) are all distinct, shows that the statement is false; namely, each of the 
(6) = 15 pairs of rows have at most four l's, and at most four O's, in common. 

(1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 O 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 
1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 

0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 

O 0 000 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 
0O O O 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1, 

Alternatively, in this arrangement, the 20 x (3) = 60 vertical pairs occur four times in each 
of the 15 pairs of rows, and no such pair occurs as many as five times. 

A-4 Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose 
that: 

(1) (a, b, c) E S if and only if (b, c, a) E S, 

(2) (a, b, c) e S if and only if (c, b, a) f S, 

(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S. 

Prove that there exists a one-to-one function g : A -- R such that g(a) < g(b) < g(c) 
implies (a, b, c) E S. 

Solution. Intuitively, one regards A as a subset of a circle and S as the set of triples in 
counterclockwise order. To obtain a linear order, we have to choose a starting point. Fixing 
ao C A, we define a relation < on A by 
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(i) For all b =$ ao, ao < b. 

(ii) If ao, b, and c are all distinct, then b < c if and only if (ao, b, c) E S. 

By (1) and (2), for all b =$ c, either b < c or c < b, but not both. By (1) and (3), b < c 
and c < d implies b < d. Thus < gives A the structure of an ordered set. Defining g(a) = 
I{b E A I b < a }I, we see that g(a) < g(b) < g(c) implies a < b and b < c; if a = ao, 
then (a, b, c) E S by definition. Otherwise, (ao, a, b) E S, (ao, b, c) E S, and the result 
follows from (1) and (3). 

Solution. If p is a prime number greater than 3, and k = [2p/3J, prove that the sum 

of binomial coefficients is divisible by p2. (For example, (7) + (7) + (7) + (7) = 7 + 21 + 
35 + 35 = 2- 72.) 

Solution. Each binomial coefficient is divisible by p, since p divides the numerator and not 
the denominator of - P! Thus we wish to show that 

p-1 + (p-l)(p -2) + (+ (p- k+ ) 
1+ 2 2 -3 2 -3 ..k 

is divisible by p. The terms are all integers and we express the sum as a sum of fractions 
whose numerators are multiples of p and whose denominators are prime to p. The sum is 
equal to 

PCi PC2 PCk K 1 1_) 
1! + 2! + k!+ -2 + - - + k ' 1! 2! k! \ 2 3 kJ 

where the ci are integers and the final parenthesis is, when p = 6q + 1 and k = 4q, equal to 

1 1 (i i N i1 
1 + + .+4--2++ +4- +-+ + + 

2 4q \2 4 4q,/2q+ 122q+2 4q 

(2q+ 1 +4) + (2q + 2 + 4q - ) + + q+ 4q - (q - 1)) 
p p 

(2q + 1)4q 3q(3q + 1) 

and, when p =6q + 5 and k = 4q + 3, equal to 

1 + -+-+*+ -21 + 
I 

2 3 4q +3\ 2 4 m4q +2}2q +2 2q +3 4q +3 
( ii N ( i 1__ 1 + - + 2 - 42 + 3 +q+ 4q + 2 ) q 2q + 2 2q + 3 -q 

(= )+ + 34q+2}+ +(~2q+q+2 +4q+(3-q)) 
p p _ _ _ _ = P ~~+ P 

+...+ P 
(2q+2)(4q+3) (2q+3)(4q+2) (3q+2)(3q+3) 

A-6 Let c > 0 be a constant. Give a complete description, with proof, of the set of all 
continuous functions f : R- l, such that f(x) = f(x2 + C) for all x E R. 

Solution. We begin with the general observation that f (x) = f (x2 + C) = f (-X), so f is 
always even. Conversely, the even extension of any continuous function on [0, oo) satisfies 
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the functional equation as long as the original function does. Therefore, we may and do 
restrict attention to x > 0 in everything that follows. We consider two cases. 

Case 1: 0 < c < 1/4. Here, x2 - x + c = 0 has positive zeros, a = (1 - V 4--)/2 
and b = (1 + )/P14)/2. If 0 < xo < b and we define x,+1 - x2 + c, the monotonicity 
of x2 + c on [0, oo) implies that xo , x1, ... is monotonic (increasing for 0 < xo < a, 
decreasing for a < xo < b) and bounded, therefore convergent, and therefore convergent 
to a since the limit must satisfy L = L2 + c. As 

f (xo) = f(x1) = = lim f (xn) = f l X) =f (a), n-+oo n-ooo 

we have f (x) = f (a) for all x, 0 < x < b. 
If xo > b, the monotonicity of Vx- c guarantees that xo > /xo-c > b, so we can 

define, recursively, xn+1 = x-c. Again, the sequence (xn) is bounded and monotonic; 
therefore it also has a limit, and this limit must be b. Then 

f(xO) = f(x1) = lM= l f(xn) = f lim xn =f(b). 
n-+oo noo 

As the range of f is finite and f is continuous, it is constant. 

Case 2: c > 1/4. Now, x + x2+c has no real fixed points. Setting to = 0, tn+ = n 

the sequence (ti) is monotonic, so if it didn't go to infinity, it would have to converge to a 
(non-existent) fixed point. So each x > 0 is in some interval [tn, tn+1 ]I 
Let g be any continuous function on the interval [0, c] such that g(c) = g(0). Define 

+(x) = Tx- + and 

g(x) forx E [0,c] = [to ti] 

g(W(x)) forx E [c,c2 + c] = [ti,t2] 

f (x) MOW)) for x E [t2, t3] 
and in general 

9(( (- *((x)) ...*)) for x CE [tn, tn+ 1 

n 

By construction, f (x) satisfies the desired functional equation. Continuity is obvious except 
at the points ti, where it follows from g(c) = g(O). Conversely, every function f (x) is 
determined by its values on [0, c). 

B-1 Define a selfish set to be a set which has its own cardinality (number of elements) 
as an element. Find, with proof, the number of subsets of {1, 2,.. ., n} which are minimal 
selfish sets, that is, selfish sets none of whose proper subsets are selfish. 

Solution. There are Fn subsets of {1, 2, . . , n} that are minimal selfish sets. Here Fn is 
the nth Fibonacci number, given recursively by F1 = F2 = 1, and Fk+2 = Fk + Fk+j or, 
in closed form, byFn = Fn - (12V) )- 

To show this, we first show that a subset A C {1, 2, ... , n} is a minimal selfish set if and 
only if the least element of A is the cardinality of A. If: If the least element of A is the 
cardinality of A, then the cardinality of any proper subset B C A is not an element of A, 
let alone of B, so B cannot be selfish; since A is selfish, A is a minimal selfish set. Only 
if: If A had an element a less than its cardinality, then one could omit elements of A so that 
the resulting proper subset B still contained a and had a as its cardinality, so B would be 
selfish and A would not be a minimal selfish set. 
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Now we can count the minimal selfish sets that are subsets of {1, 2, .. ., n} by looking 
at their least elements (= cardinalities). If the least element is i, then there are i - 1 other 
elements, to be chosen from the n-i elements i+ 1, i+2, ... , n of {1, 2,... , n}. Therefore, 
the desired number is 

n (nt ) ( ( - 1 n-)2 

which is well known (and can be shown by induction) to equal Fn. 

B-2 Show that for every positive integer n, 
2n-1 2n+1 

(2n -1) 2 (2n+1) 2 

(2 1 < 1 * 3 -5 
.. 

(2n -1) < ( e ) 

Solution. The statement is true for n = 1 (since 1 < e < 3, and we have (1/e)l/2 < 1 < 
(3/e)3/2) So we can get a proof by induction if we can show that 

2n+1 2n+3 
(2n+1) 2 (2rn+3) 2 

(2n - 1 2 2n + 1 2 

For the left-hand inequality, note that 

2n+1 
2rt2 + 1\2 2n-1 2n-1 2n+1 2n+1 2 2n+1 1 2 2 2n+1 

(2n -1) 
- e \2n- 1J e \ n Je 

t~~~~~~ e 

For the right-hand inequality, we have 

2n+3 
2n + t3 2 2n+1 2n+3 

V e J _2n+3 2t+38 2 2nt+1 2rt+ 3N2 2 

(2n+ 1 2 1 +1 e 2t+n1J e 2n+ iJ 

2n- e Jn-1e +2 1 
< 

e 
e n1 

2n+3 

so it is enough to show e < q 2 +1 ) . This can be done by taking logarithms: 

2n+3 

n ( ) = in (1+ 3 1 

\~~~2rt +1/ 2 ~ ~ ~ 2n1 n+ 

e 2n + 3 (2 _ 3 2 2) + 1 ( 2 3 2 

2+ __2 2 _ 1 _ 2 + 1 

> 2n+3( n+ 

This content downloaded from 132.239.1.231 on Mon, 25 Jan 2016 09:16:18 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


158 MATHEMATICS MAGAZINE 

since the terms are decreasing in size and alternating in sign, and 

2 2n+ 1 2 2n+1 ) (2n+1) (211) 

4n2 + 6n 
- ~~~> 1. 

4n2 + 4n + 1 

B-3 Given that {x1, X2,.. , xn} = {1, 2, ... , n}, find, with proof, the largest possible 
value, as a function of n (n > 2), of X1X2 + x2x3 + * + Xn_lXn + X71X. 

Solution. Let F(n) be the desired maximum value. We will show that for n > 3, F(n) = 
F(n- 1) + n2 - 2. It will follow that 

n n n 

F(n) = F(2) + (k2 - 2) = 4 + Z(k2-2) = 3 + Z(k2- 2) 
k=3 k=3 k=1 

2n(n7+1)(2n7+1) 2 2n3+3n2-_ lln+18 
= 3+ ~6 -7-6 

To show F(n) = F(n - 1) + n2 - 2 it is convenient to show simultaneously, by induction 
on n, that the maximum value F(n) can be reached with an arrangement for which x1 = 
n -1, Xn = n. Note that we can certainly assume that x, - n by cyclically permuting 
x1,x2,. ... ,xn. We then have 

X1X2 + * + Xn-lXn + XnXl = X1X2 + * + Xn-2Xn-1 + n(xn-1 + X1) 

= X1X2 + * + Xn-2Xn-1 + Xnl + l n - (n- Xn-1)(n - xi). 

Since n- Xn-, and n - x1 are distinct positive integers, we have (n- Xn-1)(n- xi) > 2 
and thus 

X1X2 + + Xn-lXn + XnXl < X1X2 + *+ XnflXl+ n2 - 2 < F(n-1) + n2- 2. 

If we choose x1,. . .,xn1 with x1 = n-2, XnI = n-1, andx1x2 + + xnxl has 

its maximum value F(n - 1), then both inequalities above will be equalities, showing that 
F(n) = F(n - 1) + n2 - 2. But since this maximum value can be reached for xt,,_ = 
n-1, x- = n, it can also (by reversing the order of xl,... , xn and permuting cyclically) 
be reached for x1 = n-1, Xn = n, and we are done. 

B-4 For any square matrix A, we can define sin A by the usual power series: sin A = 

(_ 1) 2n 
(2n 1 A2n'. Prove or disprove: There exists a 2 x 2 matrix A with real entries 

such that sin A = (11996) 

Solution. We'll show that there is no such matrix A. First of all, note that for any invertible 
matrix P and any square matrix B of the same size, 

00 ~~~~~~~~00 
- 00 1) ~ Z2+ _) nl- 

sin(PBP- +l)!(PBP) (-1 E (2n+ 1)! = (2n +(1)! + 

= P (2(+ 1)!B2n+l) P-1 = P(sinB)P-1 
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Thus the sines of similar matrices are similar. 

Now any 2 x 2 matrix A with real entries is similar to either a diagonal matrix (A 0) 

with real or complex entries Al, A2, or a triangular matrix (A ) with real entries A, c (in 

fact, one can take c = 1). Therefore, sin A is similar to either sin (% 
0 ) or sin (A c). 

But sin (A 0,) will be a diagonal matrix, since all powers of (A 0 ) are diagonal, 

and no diagonal matrix is similar to (O 196), since the latter matrix is not diagonal- 

izable. So if sin A = (O 196), then there must be real numbers A and c such that 

t1 1996 .. A cA 
(1 1 is similar to sin (0 A). 
Let U = ( A). We compute sin U explicitly: we have U2= (0 \A2 ),U3= 

(0 3 ) . and, by induction, Un = ( A0 n ) Therefore, 

sin U = E ( < n (A2n+1 (2n + 1)A2nc) 

sin U ~ 0(- n2n+1) 
(_l)n,\2n+l (_,)n,\22n 

(2n+1)! 

(sin A c cos A 
V sinS A 

(1 1996\ 
For this matrix to be similar to (O 1 ), the double eigenvalue sin A must equal 1. But 

then cos A = 0 and so sin U = (O ?),which is not similar to (O 196) after all, so 

we have a contradiction, and we are done. 

B-5 Given a finite string S of symbols X and 0, we write A(S) for the number of X's 
in S minus the number of O's. For example, A(XOOXOOX) = -1. We call a string S 
balanced if every substring T of (consecutive symbols of) S has -2 < A (T) < 2. Thus, 
XOOXOOX is not balanced, since it contains the substring OOXOO. Find, with proof, 
the number of balanced strings of length n. 

Solution. For a balanced string S, let S' be the string obtained from S by reversing the last 
symbol (from 0 to X or vice versa). Call the string S dangling if S' is also balanced and 
pinned if S' is not balanced. For any n, let tn be the total number of balanced strings, and let 
dn, Pn be the numbers of dangling and pinned strings, respectively. Clearly, tn = dn + Pn 
d, = 2, and P, = 0, since the two balanced strings X and 0 of length 1 are both dangling. 
We will show that dn+1 = 2pn + 4, Pn+l = dn- 2. This implies that 

dn+2= 2(dn-2) + 4 = 2dn and Pn+2 =(2Pn+ 4)-2 = 2pn+ 2, so 

tn+2= dn+2 + Pn+2 = 2(dn + Pn) + 2 = 2tn + 2 and tn+2 + 2 = 2(tn + 2). 
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Thus from t1 + 2 = 4 we get t, + 2 = 2(n-1)/2 4, tn = 2(n+3)/2 -2 for n odd; from 
t2 + 2 = 6 we get tn + 2 = 2(n-2)/2 * 6, tn = 3 2n/2 -2 for n even. 
To get the recurrences above, consider extending a balanced string S by one symbol, to SX 

or SO, so that the new string is still balanced. If S is a purely alternating string, XOXO... 
or OXOX... , then S is dangling, and S can be extended both to SX and SO. So the 
two purely alternating strings of length n give rise to 4 dangling strings of length n + 1. 
However, any other dangling string of length n can be extended in exactly one way, so the 
dn- 2 other dangling strings of length n yield dn - 2 pinned strings of length n + 1. (If the 
last double letter in the dangling string was XX, then the new letter must be an 0, and vice 
versa. Extending in this way will not "unbalance" the string, since it has alternated since 
that last double letter. Thus if the new symbol 0 created a substring with A (0) < -3, 
we could truncate that substring before the last XX and show that the original string was 
unbalanced.) 
Conversely, by similar arguments, if S is a pinned string, then S can always be extended 

both to SX and SO. (Note that if S ends in X, the last double letter in S must be 00, 
and vice versa, else S would not be pinned.) Thus the Pn pinned strings of length n give 
rise to 2pn dangling strings of length n + 1, for a total of dn+1 = 4 + 2pn along with the 
Pn+1 = dn - 2 pinned strings found previously, and we are done. 

B-6 Let (a,, b1), (a2, b2), ... , (an, bn) be the vertices of a convex polygon which contains 
the origin in its interior. Prove that there exist positive real numbers x and y such that 

(a, bi )xalybl + (a2, b2)Xa2yb2 + ' + (an)bn)Xanybn = (0,0). 

Solution. Choose r > 0 so that the polygon contains the disk of radius r centered at the 
origin. We first show that for every vector -, 

max {t (ai, bj)} > riltl -#1 

Suppose this were false for a vector $ O . Note that the equation uit * = r II - 
defines the line perpendicular to - and tangent to the disk. Therefore, if 3 * (ai, bi) < 
r I II, the vertex (ai, bi) has to be to one side of that tangent line, and since not all the 
vertices can be on the same side of the tangent line, we must have 3* (ai, bi) > r 
for some i. 
Therefore, if we set f (x, y) = E Xai ybi we have. 

f (x, y) > max {xaibi} = exp (max{ (ln x, In y). (ai, bi) > exp (r II (ln x, In y)II) 

Therefore, as II(lnx, lny)tt - oc, f(x,y) -* oo. For R ? 0, therefore, f(x,y) > 
f (1, 1) whenever (x, y) falls outside the square [R-1, R] x [R-1, R]. The infimum of f (x, y) 
over >R+ x + therefore equals the infimum over the closed and bounded set [R-1, R] x 
[R-1, R]. As f(x, y) is continuous on this square, it actually achieves this infimum at some 

point (xo,yo). But then = = Oat (xo,yo), from which x - =; 
equivalently, 

aixaly +bi + + anxanybn = blXalybl + * + bnxa b?,1 = 0, 

as desired. 
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